मराठी

Integrate the function x+3x2-2x-5 - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the function `(x + 3)/(x^2 - 2x - 5)`

बेरीज

उत्तर

Let `I = int (x + 3)/ (x^2 - 2x - 5)  dx`

Put `x + 3 = A [d/dx (x^2 - 2x - 5)] + B`

= A (2x - 2) +B              ....(i)

Comparing the coefficient of x in (i), we get

1 = 2A

⇒ `A = 1/2`

Comparing the constant terms in (i), we get 

3 = B - 2A

⇒ 3 = B - 1

⇒ B = 4

`I = int (1/2 (2x - 2) + 4)/(x^2 - 2x - 5)`

`1/2 int (2x - 2)/ (x^2 - 2x - 5) dx + 4 int dx /(x^2 - 2x - 5)`

Let `I = 1/2 I_1 + 4I_2`                      ....(ii)

Where `I_1 = int (2x - 2)/ (x^2 - 2x -5)  dx`

Put x2 - 2x - 5 = t

⇒ (2x - 2) dx = dt

∴ `I_1 = intdt/t = log |t| = log |x^2 - 2x - 5| + C_1`          ....(iii)

and `I_2 = int dx/ (x^2 - 2x - 5)`

`= dx/ ((x - 1)^2 - 6)`

`= int dx/ ((x - 1)^2 - (sqrt6)^2) = 1/(2sqrt6) log |(x - 1 - sqrt6)/(x - 1 + sqrt6)| + C_2`

Hence from (ii), (iii) and (iv), we get

∴ `I = 1/2 log |(x^2 - 2x - 5)| + 2/ sqrt6 log |(x - 1 - sqrt6)/(x - 1 + sqrt6)| + C`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.4 [पृष्ठ ३१६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.4 | Q 22 | पृष्ठ ३१६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Evaluate: `int(5x-2)/(1+2x+3x^2)dx`


Find:

`int(x^3-1)/(x^3+x)dx`


Integrate the function `(3x^2)/(x^6 + 1)`


Integrate the function `1/sqrt(1+4x^2)`


Integrate the function `1/sqrt((2-x)^2 + 1)`


Integrate the function `x^2/(1 - x^6)`


Integrate the function `1/sqrt(x^2 +2x + 2)`


Integrate the function `1/sqrt(7 - 6x - x^2)`


Integrate the function `1/sqrt((x -1)(x - 2))`


Integrate the function `1/sqrt(8+3x  - x^2)`


Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`


Integrate the function `(x + 2)/sqrt(x^2 -1)`


Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`


Integrate the function `(x + 2)/sqrt(4x - x^2)`


`int dx/sqrt(9x - 4x^2)` equals:


Integrate the function:

`sqrt(4 - x^2)`


Integrate the function:

`sqrt(x^2 + 4x +1)`


Integrate the function:

`sqrt(1+ 3x - x^2)`


Integrate the function:

`sqrt(x^2 + 3x)`


Integrate the function:

`sqrt(1+ x^2/9)`


`int sqrt(1+ x^2)  dx` is equal to ______.


`int sqrt(x^2 - 8x + 7) dx` is equal to ______.


\[\int e^{ax} \cos\ bx\ dx\]

\[\int e^{ax} \text{ sin} \left( bx + C \right) dx\]

\[\int\text{ cos }\left( \text{ log x } \right) \text{ dx }\]

\[\int\frac{1}{x^3}\text{ sin } \left( \text{ log x }\right) dx\]

\[\int e^{2x} \cos^2 x\ dx\]

\[\int e^{- 2x} \sin x\ dx\]

\[\int x^2 e^{x^3} \cos x^3 dx\]

\[\int\frac{2x}{x^3 - 1} dx\]

\[\int \left| x \right|^3 dx\] is equal to

\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]


\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]


Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`


Find: `int (dx)/(x^2 - 6x + 13)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×