Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I }= \int e^x \text{ sin}^2 x \text{ dx }\]
\[ = \int e^x \left( \frac{1 - \cos 2x}{2} \right)dx\]
\[ = \frac{1}{2}\int e^x dx - \frac{1}{2}\int e^x \text{ cos 2x dx }\]
\[ = \frac{e^x}{2} - \frac{1}{2}\int e^x \text{ cos }\left( \text{ 2x}\right) dx . . . . . \left( 1 \right)\]
\[\text{ Let I}_1 = \int e^x \text{ cos} \left( 2x \right)dx\]
`\text{Considering cos ( 2x ) as first function and` `\text{ e}^{t}` ` \text{ as second function} `
\[ I_1 = \text{ cos } \left( 2x \right) e^x - \int - 2 \text{ sin }\left( 2x \right) e^x dx\]
\[ \Rightarrow I_1 = \text{ cos } \left( 2x \right) e^x + 2\int \text{ sin }\left( 2x \right) e^x dx\]
\[ \Rightarrow I_1 = \text{ cos } \left( 2x \right) e^x + 2\left[ \text{ sin } \left( 2x \right) e^x - \int 2 \text{ cos } \left( 2x \right) e^x dx \right]\]
\[ \Rightarrow I_1 = \text{ cos }\left( 2x \right) e^x + 2 \text{ sin }\left( 2x \right) e^x - 4 I_1 \]
\[ \Rightarrow 5 I_1 = e^x \left( \text{ cos }2x + 2 \text{ sin }2x \right)\]
\[ \Rightarrow I_1 = \frac{e^x}{5}\left( \text{ cos }2x + 2 \text{ sin }2x \right) + C . . . . . \left( 2 \right)\]
` \text{ From ( 1 ) and ( 2) `
\[I = \frac{e^x}{2} - \frac{e^x}{10}\left( \text{ cos }2x + 2 \text{ sin }2x \right) + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Integrate the function `1/sqrt((2-x)^2 + 1)`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `1/sqrt(x^2 +2x + 2)`
Integrate the function `1/sqrt(7 - 6x - x^2)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(5x + 3)/sqrt(x^2 + 4x + 10)`
`int dx/(x^2 + 2x + 2)` equals:
Integrate the function:
`sqrt(4 - x^2)`
Integrate the function:
`sqrt(x^2 + 4x +1)`
Integrate the function:
`sqrt(x^2 + 4x - 5)`
Integrate the function:
`sqrt(x^2 + 3x)`
Integrate the function:
`sqrt(1+ x^2/9)`
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
Evaluate : `int_2^3 3^x dx`
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.