Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I }= \int e^{2x} \cos^2 x \text{ dx }\]
\[ = \int e^{2x} \left( \frac{1 + \cos 2x}{2} \right)\text{ dx }\]
\[ = \frac{1}{2}\int e^{2x} \text{ dx }+ \frac{1}{2}\int e^{2x} \text{ cos }\left( 2x \right)dx \]
\[ = \frac{e^{2x}}{4} + \frac{1}{2} I_1 . . . . . \left( 1 \right)\]
\[\text{ Where}\ I_1 = \int e^{2x} \text{ cos 2x dx}\]
`\text{Considering cos ( 2x ) as first function and` `\text{ e}^{2x}` ` \text{ as second function} `
\[ I_1 = \cos \left( 2x \right)\frac{e^{2x}}{2} - \int\left( - 2 \text{ sin 2x } \times \frac{e^{2x}}{2} \right)dx\]
\[ \Rightarrow I_1 = \frac{\text{ cos } \left( 2x \right) e^{2x}}{2} + \int e^{2x} \text{ sin } \left( 2x \right) dx\]
`\text{Considering sin ( 2x ) as first function and` `\text{ e}^{2x}` ` \text{ as second function} `
\[ I_1 = \frac{\text{ cos }\left( 2x \right) e^{2x}}{2} + \text{ sin }\left( 2x \right)\frac{e^{2x}}{2} - \int 2 \cos 2x\frac{e^{2x}}{2}dx\]
\[ \Rightarrow I_1 = \frac{e^{2x} \left( \cos 2x + \sin 2x \right)}{2} - I_1 \]
\[ \Rightarrow \text{ 2 }I_1 = \frac{e^{2x} \left( \cos 2x + \sin 2x \right)}{2}\]
\[ \Rightarrow I_1 = \frac{e^{2x} \left( \cos 2x + \sin 2x \right)}{4} . . . . . \left( 2 \right)\]
\[\text{ From }\left( 1 \right) \text{ and }\ \left( 2 \right)\]
\[I = \frac{e^{2x}}{4} + \frac{e^{2x}}{8}\left( \cos 2x + \sin 2x \right) + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `(x - 1)/sqrt(x^2 - 1)`
Integrate the function `(sec^2 x)/sqrt(tan^2 x + 4)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `1/sqrt(8+3x - x^2)`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
`int dx/(x^2 + 2x + 2)` equals:
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(x^2 + 4x +1)`
Integrate the function:
`sqrt(x^2 + 4x - 5)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
Integrate the function:
`sqrt(x^2 + 3x)`
`int sqrt(1+ x^2) dx` is equal to ______.
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is
Find: `int (dx)/(x^2 - 6x + 13)`