Advertisements
Advertisements
प्रश्न
Integrate the function `(sec^2 x)/sqrt(tan^2 x + 4)`
उत्तर
Let `I = int (sec^2 x)/sqrt(tan^2 x + 4) dx`
Put tan x = t
sec2 x dx = dt
Hence, `I = int dt/sqrt(t^2 + 4) dt`
`= log abs ((t + sqrt(t^2 + 4))+ C` `....[∵ int dx/sqrt (a^2 + x^2) = log |x + sqrt(x^2 + a^2)| + C]`
`= log abs (tan x + sqrt(tan^2 x + 4)) + C`
APPEARS IN
संबंधित प्रश्न
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
Integrate the function `1/sqrt(1+4x^2)`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `1/sqrt(x^2 +2x + 2)`
Integrate the function `1/sqrt(7 - 6x - x^2)`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x + 2)/sqrt(4x - x^2)`
`int dx/sqrt(9x - 4x^2)` equals:
Integrate the function:
`sqrt(4 - x^2)`
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(x^2 + 3x)`
`int sqrt(1+ x^2) dx` is equal to ______.
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
Find `int (dx)/sqrt(4x - x^2)`
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.