Advertisements
Advertisements
प्रश्न
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
विकल्प
`1/2 (x - 4) sqrt(x^2 - 8x + 7) + 9 log abs (x - 4 + sqrt(x^2 - 8x + 7)) + C`
`1/2 (x + 4) sqrt(x^2 - 8x + 7) + 9 log abs (x - 4 + sqrt(x^2 - 8x + 7)) + C`
`1/2 (x - 4) sqrt(x^2 - 8x + 7) + 3sqrt2 log abs (x - 4 + sqrt((x^2 - 8x + 7))) + C`
`1/2 (x - 4) sqrt(x^2 - 8x + 7) - 9/2 log abs (x - 4 + sqrt(x^2 - 8x + 7)) + C`
उत्तर
`int sqrt(x^2 - 8x + 7) dx` is equal to `underline(1/2 (x - 4) sqrt(x^2 - 8x + 7) - 9/2 log abs (x - 4 + sqrt(x^2 - 8x + 7)) + C)`.
Explanation:
`int sqrt(x^2 - 8x + 7) dx`
`= int sqrt(x^2 - 8x + 16 + 7 - 16) dx`
`= int sqrt((x - 4)^2 - 9) dx`
`= int sqrt(x^2 - a^2) dx = x/2 sqrt (x^2 - a^2) - a^2/2 log abs (x + sqrt(x^2 - a^2)) + C`
On substituting x - 4 and a2 = 9 in place of x,
`therefore int sqrt((x - 4)^2 - 9) dx = ((x - 4))/2 sqrt(x^2 - 8x + 7) - 9/2 log abs ((x - 4) + sqrt (x^2 - 8x + 7)) + C`
APPEARS IN
संबंधित प्रश्न
Integrate the function `1/sqrt(1+4x^2)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `(x - 1)/sqrt(x^2 - 1)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `1/sqrt(7 - 6x - x^2)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `1/sqrt(8+3x - x^2)`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(5x + 3)/sqrt(x^2 + 4x + 10)`
`int dx/(x^2 + 2x + 2)` equals:
`int dx/sqrt(9x - 4x^2)` equals:
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(x^2 + 4x +1)`
Integrate the function:
`sqrt(1-4x - x^2)`
Integrate the function:
`sqrt(x^2 + 4x - 5)`
Integrate the function:
`sqrt(x^2 + 3x)`
Integrate the function:
`sqrt(1+ x^2/9)`
Find `int dx/(5 - 8x - x^2)`
Evaluate : `int_2^3 3^x dx`
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]
Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .
Find `int (dx)/sqrt(4x - x^2)`
Find: `int (dx)/(x^2 - 6x + 13)`
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.