Advertisements
Advertisements
प्रश्न
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
उत्तर
`int (2x)/((x^2 + 1)(x^2 + 2)^2) dx`
Let x2 = y
⇒ 2xdx = dy
`=> dx = (dy)/(2x)`
`int (2x)/((x^2 + 1)(x^2 + 2)^2) dx`
= `int (dy)/((y + 1)(y + 2)^2)`
Let `1/((y + 1)(y + 2)^2) = A/(y + 1) + B/(y + 2) + C/(y + 2)^2` ......(1)
⇒ 1 = A(y+2)2 + B(y+1)(y+2) + C(y+1) .....(2)
Putting y = - 2 in (2)
1=C(-2 + 1)
⇒ C = -1
Putting y=−1 in (2)
1 = A(-1 + 2)2
⇒ 1 = A(1)
⇒ A = 1
Putting y=0 in (2)
1 = 4A + B(2) +C
⇒ 1 = 4 + 2B − 1
⇒ 1 = 3 + 2B
⇒ -2 = 2B
⇒ B = -1
Substituting the values of A, B and C in (1)
`1/((y + 1)(y +2)^2) = 1/(y + 1) - 1/(y + 2) - 1/(y + 2)^2`
`=> int (dy)/((y + 1)(y + 2)^2) = int (dy)/(y + 1) - int (dy)/(y + 2) - int (dy)/(y + 2)^2`
= `log |y + 1| - log|y + 2| + 1/(y + 2) + C`
Hence, `int (2x)/((x^2 + 1)(x^2 + 2)^2) dx = log|x^2 + 1|- log |x^2 + 2|+ 1/(x^2 + 2) + C`
APPEARS IN
संबंधित प्रश्न
Find:
`int(x^3-1)/(x^3+x)dx`
Integrate the function `1/sqrt((2-x)^2 + 1)`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `1/sqrt(7 - 6x - x^2)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
Integrate the function `(5x + 3)/sqrt(x^2 + 4x + 10)`
`int dx/sqrt(9x - 4x^2)` equals:
Integrate the function:
`sqrt(4 - x^2)`
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(1-4x - x^2)`
Integrate the function:
`sqrt(x^2 + 4x - 5)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is
Find `int (dx)/sqrt(4x - x^2)`
Find: `int (dx)/(x^2 - 6x + 13)`
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.