Advertisements
Advertisements
Question
If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then
Options
a = b
\[a = \frac{1}{2}b\]
\[a \leq - \frac{1}{2}\]
\[a > - \frac{3}{2}\]
Solution
\[a \leq - \frac{1}{2}\]
\[Given: f\left( x \right) = \cos \left| x \right| - 2ax + b\]
\[\text { Now}, \left| x \right| =\begin{cases} x ,& x \geq 0 \\ - x, & x < 0 \end{cases}\]
\[\text { and } \cos \left| x \right| = \begin{cases} \cos\left( x \right) , & x \geq 0 \\cos\left( - x \right) = cos\left( x \right), & x < 0\end{cases}\]
\[ \therefore \cos\left| x \right| = \cos x , \forall x \in R\]
\[ \therefore f\left( x \right) = \cos x - 2ax + b\]
\[ \Rightarrow f'\left( x \right) = - \sin x - 2a\]
\[\text { It is given that f(x) is increasing } . \]
\[ \Rightarrow f'\left( x \right) \geq 0\]
\[ \Rightarrow - \sin x - 2a \geq 0\]
\[ \Rightarrow \sin x + 2a \leq 0\]
\[ \Rightarrow 2a \leq - \sin x\]
\[\text { The least value of -sin x is -1 }.\]
\[ \Rightarrow 2a \leq - 1\]
\[ \Rightarrow a \leq \frac{- 1}{2}\]
APPEARS IN
RELATED QUESTIONS
The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.
Test whether the function is increasing or decreasing.
f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0,
Show that the function given by f(x) = sin x is
- strictly increasing in `(0, pi/2)`
- strictly decreasing in `(pi/2, pi)`
- neither increasing nor decreasing in (0, π)
Find the intervals in which the function f given by f(x) = 2x2 − 3x is
- strictly increasing
- strictly decreasing
Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].
Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x3 + 4x2 + 15 ?
Show that f(x) = sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neither increasing nor decreasing in (0, π) ?
Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?
Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?
Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?
The interval of increase of the function f(x) = x − ex + tan (2π/7) is
Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is
The function f(x) = x2 e−x is monotonic increasing when
f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when
Function f(x) = loga x is increasing on R, if
If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then
Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is
(a) strictly increasing
(b) strictly decreasing
Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q
Find the intervals in which function f given by f(x) = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .
Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6
Find the values of x for which the following functions are strictly decreasing:
f(x) = 2x3 – 3x2 – 12x + 6
Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing
Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing
If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.
For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?
The function `1/(1 + x^2)` is increasing in the interval ______
The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.
2x3 - 6x + 5 is an increasing function, if ____________.
`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.
The length of the longest interval, in which the function `3 "sin x" - 4 "sin"^3"x"` is increasing, is ____________.
The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.
Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.
A function f is said to be increasing at a point c if ______.
The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.
Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.