English

Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2]. - Mathematics

Advertisements
Advertisements

Question

Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].

Sum

Solution

We have f (x) = x2 + ax + 1

= f' (x) = 2x + a

If 1 < x < 2

= 2 < 2x < 4

= 2 + a < 2x + a < 4 + a

= 2 + a < f' (x) < 4 + a

Now f (x) is strictly increasing on (1, 2) only if f' (x) > 0 for 1 < x < 2

= 2 + a ≥ 0

= a ≥ -2

∴ Required least value of a is -2 

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application of Derivatives - Exercise 6.2 [Page 206]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 6 Application of Derivatives
Exercise 6.2 | Q 14 | Page 206

RELATED QUESTIONS

The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?


Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R


The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.

(A) increasing

(B) decreasing

(C) increasing and decreasing

(D) neither increasing nor decreasing


Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is

  1. Strictly increasing
  2. Strictly decreasing

Find the intervals in which the following functions are strictly increasing or decreasing:

10 − 6x − 2x2


Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?


Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2  ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?


Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?


Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).


Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?


If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?


Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?


The function f(x) = xx decreases on the interval


In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is


If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then

 


Function f(x) = loga x is increasing on R, if


If x = cos2 θ and y = cot θ then find `dy/dx  at  θ=pi/4` 


The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.


 Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R. 


Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.


Choose the correct option from the given alternatives :

Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.


Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function


Show that the function f(x) = x3 + 10x + 7 for x ∈ R is strictly increasing


Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R


The slope of tangent at any point (a, b) is also called as ______.


The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing


A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is


f(x) = `{{:(0","                 x = 0 ), (x - 3","   x > 0):}` The function f(x) is ______


Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R


Which of the following functions is decreasing on `(0, pi/2)`?


The function f(x) = tanx – x ______.


The function f(x) = tan-1 x is ____________.


Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.

Given f(x) = 2x3 – 9x2 + 12x + 2

∴ f'(x) = `squarex^2 - square + square`

∴ f'(x) = `6(x - 1)(square)`

Now f'(x) < 0

∴ 6(x – 1)(x – 2) < 0

Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0

Case 1: (x – 1) < 0 and (x – 2) < 0

∴ x < `square` and x > `square`

Which is contradiction

Case 2: x – 1 and x – 2 < 0

∴ x > `square` and x < `square`

1 < `square` < 2

f(x) is decreasing if and only if x ∈ `square`


If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.


Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.


Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×