Advertisements
Advertisements
प्रश्न
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.
उत्तर
Total cost C(x) = Processing cost + labour cost
C(x) = x2 + 150 - 54x
C(x) = x2 - 54x + 150
`("dc")/("dx")` = 2x - 54
Total cost is decreasing
If `("dc")/("dx")`< 0
i.e if 2x - 54 < 0
i.e if 2x < 54
i.e if x < 27
Total cost C is decreasing for x < 27.
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the function f given by f(x) = 2x2 − 3x is
- strictly increasing
- strictly decreasing
Find the intervals in which the following functions are strictly increasing or decreasing:
(x + 1)3 (x − 3)3
Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).
The interval in which y = x2 e–x is increasing is ______.
Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?
Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?
Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?
Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?
Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 12x2 + 18x + 15 ?
Find the interval in which the following function are increasing or decreasing f(x) = 5x3 − 15x2 − 120x + 3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?
Show that f(x) = e2x is increasing on R.
Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?
Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?
Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?
Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?
Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?
Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?
The function f(x) = cot−1 x + x increases in the interval
The function f(x) = xx decreases on the interval
The function f(x) = x2 e−x is monotonic increasing when
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
Every invertible function is
The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is
Function f(x) = ax is increasing on R, if
If x = cos2 θ and y = cot θ then find `dy/dx at θ=pi/4`
Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R.
Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.
Find the values of x for which the following functions are strictly increasing:
f(x) = 3 + 3x – 3x2 + x3
Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.
Show that f(x) = x – cos x is increasing for all x.
Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R
The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.
The slope of tangent at any point (a, b) is also called as ______.
The function f(x) = x3 - 3x is ______.
Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`
Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R
Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`
The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.
The function f (x) = x2, for all real x, is ____________.
In `(0, pi/2),` the function f (x) = `"x"/"sin x"` is ____________.
Function given by f(x) = sin x is strictly increasing in.
Show that function f(x) = tan x is increasing in `(0, π/2)`.
Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.
y = log x satisfies for x > 1, the inequality ______.
A function f is said to be increasing at a point c if ______.
In which one of the following intervals is the function f(x) = x3 – 12x increasing?
Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.