मराठी

The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.

पर्याय

  • Increasing in `(pi, (3pi)/2)`

  • Decreasing in `(pi/2, pi)`

  • Decreasing in `[(-pi)/2, pi/2]`

  • Decreasing in `[0, pi/2]`

MCQ
रिकाम्या जागा भरा

उत्तर

The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly decreasing in `(pi/2, pi)`.

Explanation:

Here, f(x) = 4 sin3x – 6 sin2x + 12 sin x + 100

f'(x) = 12 sin2x · cos x – 12 sin x cos x + 12 cos

= 12 cos x [sin2x – sin x + 1]

= 12 cos x [sin2x + (1 – sin x)]

∵ 1 – sin x ≥ 0 and sin2x ≥ 0

∴ sin2x + 1 – sin x ≥ 0   .....(when cos x > 0)

Hence, f'(x) > 0, when cos x > 0 i.e., `x ∈ ((-pi)/2, pi/2)`

So, f(x) is increasing where `x ∈ ((-pi)/2, pi/2)` and f'(x) < 0

When cos x < 0 i.e. `x ∈ (pi/2, (3pi)/2)` 

Hence, (x) is decreasing when `x ∈ (pi/2, (3pi)/2)` 

As `(pi/2, pi) ∈ (pi/2, (3pi)/2)` 

So f(x) is decreasing in `(pi/2, pi)`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application Of Derivatives - Exercise [पृष्ठ १४०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 6 Application Of Derivatives
Exercise | Q 49 | पृष्ठ १४०

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.


Show that the function given by f(x) = 3x + 17 is strictly increasing on R.


Prove that  y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`


The interval in which y = x2 e–x is increasing is ______.


Find the interval in which the following function are increasing or decreasing  f(x) = x2 + 2x − 5  ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?


Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?


Show that f(x) = tan−1 x − x is a decreasing function on R ?


Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?


Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?


Let f(x) = x3 − 6x2 + 15x + 3. Then,


Function f(x) = | x | − | x − 1 | is monotonically increasing when

 

 

 

 

 

 

 

 

 

 

 


Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q 


 Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R. 


Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`


Choose the correct option from the given alternatives :

Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.


Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function


Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing


The function f(x) = x3 - 3x is ______.


If f(x) = x3 – 15x2 + 84x – 17, then ______.


Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`


The function f (x) = 2 – 3 x is ____________.


The function f: N → N, where

f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is


Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 –  h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.


The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is


Show that function f(x) = tan x is increasing in `(0, π/2)`.


Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.


If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.


y = log x satisfies for x > 1, the inequality ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×