Advertisements
Advertisements
प्रश्न
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
पर्याय
increasing
decreasing
constant
none of these
उत्तर
decreasing
\[\text { Given }: f\left( x \right) = 2\left| x - 1 \right| + 3\left| x - 2 \right|\]
\[\text { If 1 < x < 2, then }\left| x - 1 \right| = x - 1 . \]
\[ \Rightarrow \left| x - 2 \right| = - \left( x - 2 \right)\]
\[\text { Now,}\]
\[f\left( x \right) = 2\left| x - 1 \right| + 3\left| x - 2 \right|\]
\[ = 2 \left( x - 1 \right) + 3 \left( - x + 2 \right)\]
\[ = 2x - 2 - 3x + 6\]
\[ = - x + 4\]
\[f'\left( x \right) = - 1 < 0\]
\[\text { So,}f\left( x \right) \text { is decreasing when 1 < x < 2 } .\]
APPEARS IN
संबंधित प्रश्न
Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.
Test whether the function is increasing or decreasing.
f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0,
Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is
- Strictly increasing
- Strictly decreasing
Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.
Show that the function f(x) = 4x3 - 18x2 + 27x - 7 is always increasing on R.
Find the intervals in which the function `f(x) = x^4/4 - x^3 - 5x^2 + 24x + 12` is (a) strictly increasing, (b) strictly decreasing
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20 ?
Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?
Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?
Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ?
Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).
Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?
What are the values of 'a' for which f(x) = ax is increasing on R ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
State whether f(x) = tan x − x is increasing or decreasing its domain ?
The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:
Every invertible function is
The radius r of a right circular cylinder is increasing uniformly at the rate of 0·3 cm/s and its height h is decreasing at the rate of 0·4 cm/s. When r = 3·5 cm and h = 7 cm, find the rate of change of the curved surface area of the cylinder. \[\left[ \text{ Use } \pi = \frac{22}{7} \right]\]
The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.
Find MPC ( Marginal propensity to Consume ) and APC ( Average Propensity to Consume ) if the expenditure Ec of a person with income I is given as Ec = ( 0.0003 ) I2 + ( 0.075 ) I when I = 1000.
Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing.
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.
Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is
(a) Strictly increasing
(b) strictly decreasing
The slope of tangent at any point (a, b) is also called as ______.
State whether the following statement is True or False:
The function f(x) = `3/x` + 10, x ≠ 0 is decreasing
The function f(x) = 9 - x5 - x7 is decreasing for
For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?
The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.
The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.
The function `"f"("x") = "x"/"logx"` increases on the interval
Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.
Given f(x) = 2x3 – 9x2 + 12x + 2
∴ f'(x) = `squarex^2 - square + square`
∴ f'(x) = `6(x - 1)(square)`
Now f'(x) < 0
∴ 6(x – 1)(x – 2) < 0
Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0
Case 1: (x – 1) < 0 and (x – 2) < 0
∴ x < `square` and x > `square`
Which is contradiction
Case 2: x – 1 and x – 2 < 0
∴ x > `square` and x < `square`
1 < `square` < 2
f(x) is decreasing if and only if x ∈ `square`
Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.
If f(x) = x + cosx – a then ______.