Advertisements
Advertisements
Question
Show that function f(x) = tan x is increasing in `(0, π/2)`.
Solution
Given, f(x) = tan x
f'(x) = sec2x
But sec2x > 0, ∀x∈ (0, π/2)
Hence f(x) = tan x is strictly increasing in (0, π/2).
APPEARS IN
RELATED QUESTIONS
Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing
Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.
Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`
Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R
Show that y = `log(1+x) - (2x)/(2+x), x> - 1`, is an increasing function of x throughout its domain.
Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].
The interval in which y = x2 e–x is increasing is ______.
Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.
Find the intervals in which the function `f(x) = x^4/4 - x^3 - 5x^2 + 24x + 12` is (a) strictly increasing, (b) strictly decreasing
Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.
Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?
Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?
Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?
Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .
Find the interval in which the following function are increasing or decreasing f(x) = 6 − 9x − x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 5x3 − 15x2 − 120x + 3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?
Find the interval in which the following function are increasing or decreasing f(x) = \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\] x > 0 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?
Show that f(x) = sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neither increasing nor decreasing in (0, π) ?
Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?
Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?
Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?
Show that f(x) = tan−1 x − x is a decreasing function on R ?
Show that the function f given by f(x) = 10x is increasing for all x ?
Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?
Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?
What are the values of 'a' for which f(x) = ax is increasing on R ?
Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?
The interval of increase of the function f(x) = x − ex + tan (2π/7) is
The function f(x) = cot−1 x + x increases in the interval
The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval
If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval
Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.
Function f(x) = x3 − 27x + 5 is monotonically increasing when
Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when
Function f(x) = | x | − | x − 1 | is monotonically increasing when
If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then
Function f(x) = loga x is increasing on R, if
Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)
If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then
Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]
If x = cos2 θ and y = cot θ then find `dy/dx at θ=pi/4`
Find `dy/dx,if e^x+e^y=e^(x-y)`
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R.
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.
If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 , Interpret your result.
The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.
Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7
Find the values of x for which the following functions are strictly decreasing:
f(x) = 2x3 – 3x2 – 12x + 6
Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 – 15x2 – 84x – 7
State whether the following statement is True or False:
The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.
Let f(x) = x3 − 6x2 + 9𝑥 + 18, then f(x) is strictly decreasing in ______
Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R
Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing
Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function
Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing
By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.
Solution: f(x) = 2x3 – 15x2 – 84x – 7
∴ f'(x) = `square`
∴ f'(x) = 6`(square) (square)`
Since f(x) is decreasing function.
∴ f'(x) < 0
Case 1: `(square)` > 0 and (x + 2) < 0
∴ x ∈ `square`
Case 2: `(square)` < 0 and (x + 2) > 0
∴ x ∈ `square`
∴ f(x) is decreasing function if and only if x ∈ `square`
For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.
The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______
Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______
The function f(x) = sin x + 2x is ______
The function `1/(1 + x^2)` is increasing in the interval ______
If f(x) = x3 – 15x2 + 84x – 17, then ______.
If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.
y = x(x – 3)2 decreases for the values of x given by : ______.
The values of a for which the function f(x) = sinx – ax + b increases on R are ______.
The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.
The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.
In `(0, pi/2),` the function f (x) = `"x"/"sin x"` is ____________.
2x3 - 6x + 5 is an increasing function, if ____________.
If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:
The function f: N → N, where
f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is
Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 – h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.
Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.
y = log x satisfies for x > 1, the inequality ______.
Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.
A function f is said to be increasing at a point c if ______.
The function f(x) = x3 + 3x is increasing in interval ______.