Advertisements
Advertisements
Question
The interval in which y = x2 e–x is increasing is ______.
Options
(– ∞, ∞)
(– 2, 0)
(2, ∞)
(0, 2)
Solution
The interval in which y = x2 e–x is increasing is (0, 2).
Explanation:
x2 - e-x
`dy/dx = 2xe^-x - x^2 e^-x`
= xe-x (2 - x)
If f'(x) = 0
xe-x (2 - x) = 0
x = 0, 2
x = 0 and x = 2 divide the real line into intervals `(- infty, 0), (0, 2)` and `(2, infty)`.
Thus, `(- infty, -1)` and `(1, infty)` represent the intervals.
The function y is continuously increasing in the interval (0, 2).
Interval | (- ∞, 0) | (0, 2) | (2, ∞ ) |
Sign of x | -ve | +ve | +ve |
sign of (2 - x) | +ve | +ve | -ve |
sign of e-x | +ve | +ve | +ve |
sign of f' (x) | -ve | +ve | -ve |
APPEARS IN
RELATED QUESTIONS
Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing
Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.
Find the intervals in which the following functions are strictly increasing or decreasing:
10 − 6x − 2x2
Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 107 ?
Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1 ?
Show that f(x) = x − sin x is increasing for all x ∈ R ?
Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?
Find the intervals in which f(x) = log (1 + x) −\[\frac{x}{1 + x}\] is increasing or decreasing ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval
If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then
If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then
Function f(x) = ax is increasing on R, if
Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)
The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is
Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6
Find the values of x for which the following functions are strictly increasing:
f(x) = 3 + 3x – 3x2 + x3
Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7
Solve the following:
Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.
State whether the following statement is True or False:
The function f(x) = `3/x` + 10, x ≠ 0 is decreasing
The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing
The function f(x) = x3 - 3x is ______.
Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`
Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.
The function f(x) = tan-1 x is ____________.
In `(0, pi/2),` the function f (x) = `"x"/"sin x"` is ____________.
The length of the longest interval, in which the function `3 "sin x" - 4 "sin"^3"x"` is increasing, is ____________.
Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.
Given f(x) = 2x3 – 9x2 + 12x + 2
∴ f'(x) = `squarex^2 - square + square`
∴ f'(x) = `6(x - 1)(square)`
Now f'(x) < 0
∴ 6(x – 1)(x – 2) < 0
Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0
Case 1: (x – 1) < 0 and (x – 2) < 0
∴ x < `square` and x > `square`
Which is contradiction
Case 2: x – 1 and x – 2 < 0
∴ x > `square` and x < `square`
1 < `square` < 2
f(x) is decreasing if and only if x ∈ `square`
The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.
If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.
If f(x) = x + cosx – a then ______.
The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.