English

Show that F(X) = Tan−1 X − X is a Decreasing Function on R ? - Mathematics

Advertisements
Advertisements

Question

Show that f(x) = tan−1 x − x is a decreasing function on R ?

Sum

Solution

\[f\left( x \right) = \tan^{- 1} x - x\]

\[f'\left( x \right) = \frac{1}{1 + x^2} - 1\]

\[ = \frac{1 - 1 - x^2}{1 + x^2}\]

\[ = \frac{- x^2}{1 + x^2}\]

\[\text { We know,}\]

\[ x^2 \geq 0, 1+ x^2 >0, \forall x \in R\]

\[ \therefore \frac{- x^2}{1 + x^2} < 0, \forall x \in R\]

\[ \Rightarrow f'\left( x \right) < 0, \forall x \in R\]

\[\text { So,}f\left( x \right) \text { is decreasing on R }.\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Increasing and Decreasing Functions - Exercise 17.2 [Page 35]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 24 | Page 35

RELATED QUESTIONS

The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.


Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.


Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.


Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?


Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?


Find the interval in which the following function are increasing or decreasing  f(x) = x2 + 2x − 5  ?


Find the interval in which the following function are increasing or decreasing  f(x) = 6 − 9x − x2  ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?


Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?


Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?


Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?


Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).


State whether f(x) = tan x − x is increasing or decreasing its domain ?


The interval of increase of the function f(x) = x − ex + tan (2π/7) is


If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval


Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.


In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is


Function f(x) = ax is increasing on R, if


Function f(x) = loga x is increasing on R, if


The function f(x) = x9 + 3x7 + 64 is increasing on


The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.


Find `dy/dx,if e^x+e^y=e^(x-y)`


 Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R. 


Find MPC ( Marginal propensity to Consume ) and APC ( Average Propensity to Consume ) if the expenditure Ec of a person with income I is given as Ec = ( 0.0003 ) I2 + ( 0.075 ) I when I = 1000.


Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.


Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12


show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


Show that f(x) = x – cos x is increasing for all x.


Choose the correct alternative:

The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is


The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.


By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.

Solution: f(x) = 2x3 – 15x2 – 84x – 7

∴ f'(x) = `square`

∴ f'(x) = 6`(square) (square)`

Since f(x) is decreasing function.

∴ f'(x) < 0

Case 1: `(square)` > 0 and (x + 2) < 0

∴ x ∈ `square`

Case 2: `(square)` < 0 and (x + 2) > 0

∴ x ∈ `square`

∴ f(x) is decreasing function if and only if x ∈ `square`


A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is


The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


Which of the following functions is decreasing on `(0, pi/2)`?


The values of a for which the function f(x) = sinx – ax + b increases on R are ______.


2x3 - 6x + 5 is an increasing function, if ____________.


Read the following passage:

The use of electric vehicles will curb air pollution in the long run.

The use of electric vehicles is increasing every year and the estimated electric vehicles in use at any time t is given by the function V:

V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`

where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively.

Based on the above information, answer the following questions:

  1. Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
  2. Prove that the function V(t) is an increasing function. (2)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×