Advertisements
Advertisements
Question
Show that f(x) = tan−1 x − x is a decreasing function on R ?
Solution
\[f\left( x \right) = \tan^{- 1} x - x\]
\[f'\left( x \right) = \frac{1}{1 + x^2} - 1\]
\[ = \frac{1 - 1 - x^2}{1 + x^2}\]
\[ = \frac{- x^2}{1 + x^2}\]
\[\text { We know,}\]
\[ x^2 \geq 0, 1+ x^2 >0, \forall x \in R\]
\[ \therefore \frac{- x^2}{1 + x^2} < 0, \forall x \in R\]
\[ \Rightarrow f'\left( x \right) < 0, \forall x \in R\]
\[\text { So,}f\left( x \right) \text { is decreasing on R }.\]
APPEARS IN
RELATED QUESTIONS
The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.
Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.
Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.
Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?
Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = x2 + 2x − 5 ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 − 9x − x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?
Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?
Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?
Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?
Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).
State whether f(x) = tan x − x is increasing or decreasing its domain ?
The interval of increase of the function f(x) = x − ex + tan (2π/7) is
If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval
Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
Function f(x) = ax is increasing on R, if
Function f(x) = loga x is increasing on R, if
The function f(x) = x9 + 3x7 + 64 is increasing on
The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.
Find `dy/dx,if e^x+e^y=e^(x-y)`
Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R.
Find MPC ( Marginal propensity to Consume ) and APC ( Average Propensity to Consume ) if the expenditure Ec of a person with income I is given as Ec = ( 0.0003 ) I2 + ( 0.075 ) I when I = 1000.
Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.
Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12
show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Show that f(x) = x – cos x is increasing for all x.
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.
By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.
Solution: f(x) = 2x3 – 15x2 – 84x – 7
∴ f'(x) = `square`
∴ f'(x) = 6`(square) (square)`
Since f(x) is decreasing function.
∴ f'(x) < 0
Case 1: `(square)` > 0 and (x + 2) < 0
∴ x ∈ `square`
Case 2: `(square)` < 0 and (x + 2) > 0
∴ x ∈ `square`
∴ f(x) is decreasing function if and only if x ∈ `square`
A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
Which of the following functions is decreasing on `(0, pi/2)`?
The values of a for which the function f(x) = sinx – ax + b increases on R are ______.
2x3 - 6x + 5 is an increasing function, if ____________.
Read the following passage:
The use of electric vehicles will curb air pollution in the long run. V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2` where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively. |
Based on the above information, answer the following questions:
- Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
- Prove that the function V(t) is an increasing function. (2)