Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[\int_0^\frac{\pi}{2} \left| \cos 2x \right| d x\]
\[\text{We know that}, \left| \cos 2x \right| = \begin{cases} - \cos 2x &,& \frac{\pi}{4} \leq x \leq \frac{\pi}{2}\\\cos 2x&,& 0 < x \leq \frac{\pi}{4}\end{cases}\]
\[ \therefore I = \int_{- 2}^2 \left| \cos 2x \right| d x\]
\[ \Rightarrow I = \int_0^\frac{\pi}{4} \cos 2x dx - \int_\frac{\pi}{4}^\frac{\pi}{2} \cos 2x dx\]
\[ \Rightarrow I = \left[ \frac{\sin 2x}{2} \right]_0^\frac{\pi}{4} - \left[ \frac{\sin 2x}{2} \right]_\frac{\pi}{4}^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{1}{2} - 0 - 0 + \frac{1}{2}\]
\[ \Rightarrow I = 1\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate : `int1/(3+5cosx)dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate :
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Find: `int_ (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.
`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.
`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
Find: `int (dx)/sqrt(3 - 2x - x^2)`