Advertisements
Advertisements
प्रश्न
Evaluate each of the following integral:
उत्तर
\[\text{Let I }= \int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\] ....................(1)
Then,
\[I = \int_0^{2\pi} \frac{e^\ sin\left( 2\pi - x \right)}{e^\ sin\left( 2\pi - x \right) + e^{- \ sin \left( 2\pi - x \right)}}dx .....................\left( \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right)\]
\[ = \int_0^{2\pi} \frac{e^{- \ sin x}}{e^{- \ sin x} + e^\ sin x}dx ..........................\left( 2 \right)\]
Adding (1) and (2), we get
\[2I = \int_0^{2\pi} \frac{e^\ sin x + e^{- \ sin x}}{e^\ sin x + e^{- \ sin x}}dx\]
\[ \Rightarrow 2I = \int_0^{2\pi} dx\]
\[ \Rightarrow 2I = x_0^{2\pi} \]
\[ \Rightarrow 2I = 2\pi - 0\]
\[ \Rightarrow I = \pi\]
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
Evaluate the integral by using substitution.
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate the following integral:
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is
Find: `int (dx)/sqrt(3 - 2x - x^2)`
Evaluate:
`int (1 + cosx)/(sin^2x)dx`
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.