Advertisements
Advertisements
प्रश्न
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
उत्तर
Let \[I = \int\limits_{- 2}^1 \left| x^3 - x \right|dx \text { and } f\left( x \right) = x^3 - x\]
Clearly,
\[f\left( x \right) = x^3 - x = x\left( x - 1 \right)\left( x + 1 \right)\]
The signs of f(x) for different values of x are shown in the figure below.
We observe that:
\[f\left( x \right) > 0\text { for all }x \in \left( - 1, 0 \right) \text { and } , f\left( x \right) < 0 \text { for all } x \in \left( - 2, - 1 \right) \cup \left( 0, 1 \right)\]
\[\left| f\left( x \right) \right| = \binom{f\left( x \right), x \in \left( - 1, 0 \right)}{ - f\left( x \right), x \in \left( - 2, - 1 \right) \cup \left( 0, 1 \right)}\]
\[ \Rightarrow \left| x^3 - x \right| = \binom{ x^3 - x, x \in \left( - 1, 0 \right)}{ - \left( x^3 - x \right), x \in \left( - 2, - 1 \right) \cup \left( 0, 1 \right)}\]
\[ \Rightarrow I = \int_{- 2}^{- 1} \left| x^3 - x \right|dx + \int_{- 1}^0 \left| x^3 - x \right|dx + \int_0^1 \left| x^3 - x \right|dx\]
\[\Rightarrow I = \int_{- 2}^{- 1} - \left( x^3 - x \right)dx + \int_{- 1}^0 \left( x^3 - x \right)dx + \int_0^1 - \left( x^3 - x \right)dx\]
\[ \Rightarrow I = \left[ - \frac{x^4}{4} + \frac{x^2}{2} \right]_{- 2}^{- 1} + \left[ \frac{x^4}{4} - \frac{x^2}{2} \right]_{- 1}^0 + \left[ - \frac{x^4}{4} + \frac{x^2}{2} \right]_0^1 \]
\[ \Rightarrow I = \left[ \left( - \frac{1}{4} + \frac{1}{2} \right) - \left( - \frac{16}{4} + \frac{4}{2} \right) \right] + \left[ 0 - \left( \frac{1}{4} - \frac{1}{2} \right) \right] + \left[ \left( - \frac{1}{4} + \frac{1}{2} \right) - 0 \right]\]
\[ \Rightarrow I = \left[ \frac{1}{4} + 2 \right] + \left[ 0 + \frac{1}{4} \right] + \left[ \frac{1}{4} - 0 \right]\]
\[ \Rightarrow I = \frac{11}{4}\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`
Evaluate the integral by using substitution.
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
`int_0^(pi4) sec^4x "d"x` = ______.
`int_0^1 x^2e^x dx` = ______.
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is