हिंदी

\[\Int\Limits_{- 2}^1 \Left| X^3 - X \Right|Dx\] - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .

उत्तर

Let \[I = \int\limits_{- 2}^1 \left| x^3 - x \right|dx \text { and } f\left( x \right) = x^3 - x\]

Clearly,

\[f\left( x \right) = x^3 - x = x\left( x - 1 \right)\left( x + 1 \right)\]

The signs of f(x) for different values of x are shown in the figure below.
We observe that:

\[f\left( x \right) > 0\text { for all }x \in \left( - 1, 0 \right) \text { and } , f\left( x \right) < 0 \text { for all } x \in \left( - 2, - 1 \right) \cup \left( 0, 1 \right)\]

\[\left| f\left( x \right) \right| = \binom{f\left( x \right), x \in \left( - 1, 0 \right)}{ - f\left( x \right), x \in \left( - 2, - 1 \right) \cup \left( 0, 1 \right)}\]

\[ \Rightarrow \left| x^3 - x \right| = \binom{ x^3 - x, x \in \left( - 1, 0 \right)}{ - \left( x^3 - x \right), x \in \left( - 2, - 1 \right) \cup \left( 0, 1 \right)}\]

\[ \Rightarrow I = \int_{- 2}^{- 1} \left| x^3 - x \right|dx + \int_{- 1}^0 \left| x^3 - x \right|dx + \int_0^1 \left| x^3 - x \right|dx\]

\[\Rightarrow I = \int_{- 2}^{- 1} - \left( x^3 - x \right)dx + \int_{- 1}^0 \left( x^3 - x \right)dx + \int_0^1 - \left( x^3 - x \right)dx\]

\[ \Rightarrow I = \left[ - \frac{x^4}{4} + \frac{x^2}{2} \right]_{- 2}^{- 1} + \left[ \frac{x^4}{4} - \frac{x^2}{2} \right]_{- 1}^0 + \left[ - \frac{x^4}{4} + \frac{x^2}{2} \right]_0^1 \]

\[ \Rightarrow I = \left[ \left( - \frac{1}{4} + \frac{1}{2} \right) - \left( - \frac{16}{4} + \frac{4}{2} \right) \right] + \left[ 0 - \left( \frac{1}{4} - \frac{1}{2} \right) \right] + \left[ \left( - \frac{1}{4} + \frac{1}{2} \right) - 0 \right]\]

\[ \Rightarrow I = \left[ \frac{1}{4} + 2 \right] + \left[ 0 + \frac{1}{4} \right] + \left[ \frac{1}{4} - 0 \right]\]

\[ \Rightarrow I = \frac{11}{4}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2016-2017 (March) Foreign Set 3

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`


Evaluate :

`∫_(-pi)^pi (cos ax−sin bx)^2 dx`


Evaluate the integral by using substitution.

`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`


Evaluate the integral by using substitution.

`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`


Evaluate the integral by using substitution.

`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`


Evaluate the integral by using substitution.

`int_0^2 dx/(x + 4 - x^2)`


Evaluate of the following integral:

(i)  \[\int x^4 dx\]

 


Evaluate of the following integral: 

\[\int\frac{1}{x^{3/2}}dx\]

Evaluate of the following integral: 

\[\int 3^x dx\]

Evaluate of the following integral:

\[\int \log_x \text{x  dx}\] 

Evaluate: 

\[\int\sqrt{\frac{1 + \cos 2x}{2}}dx\]

Evaluate the following integral:

\[\int\limits_{- 4}^4 \left| x + 2 \right| dx\]

Evaluate the following integral:

\[\int\limits_0^3 \left| 3x - 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_1^2 \left| x - 3 \right| dx\]

Evaluate the following integral:

\[\int\limits_0^{2\pi} \left| \sin x \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- \pi/4}^{\pi/4} \left| \sin x \right| dx\]

Evaluate the following integral:

\[\int\limits_0^4 \left( \left| x \right| + \left| x - 2 \right| + \left| x - 4 \right| \right) dx\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx\]

 


Evaluate the following integral:

\[\int_{- 2}^2 \frac{3 x^3 + 2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]

Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{a\sin x + b\sin x}{\sin x + \cos x}dx\]

 


Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .


Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x"  d"x"`.


Evaluate:  `int_-1^2 (|"x"|)/"x"d"x"`.


If `I_n = int_0^(pi/4) tan^n theta  "d"theta " then " I_8 + I_6` equals ______.


`int_0^(pi4) sec^4x  "d"x` = ______.


`int_0^1 x^2e^x dx` = ______.


The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×