Advertisements
Advertisements
प्रश्न
Evaluate each of the following integral:
उत्तर
\[\text{Let I} =\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx................\left(1\right)\]
Then,
\[I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 \left[ \frac{\pi}{4} + \left( - \frac{\pi}{4} \right) - x \right]}{1 + e^\left[ \frac{\pi}{4} + \left( - \frac{\pi}{4} \right) - x \right]}dx .......................\left[ \int_a^b f\left( x \right)dx = \int_a^b f\left( a + b - x \right)dx \right]\]
\[ = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 \left( - x \right)}{1 + e^{- x}}dx\]
\[ = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + \frac{1}{e^x}}dx\]
\[ = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{e^x \tan^2 x}{e^x + 1}dx . . . . . \left( 2 \right)\]
Adding (1) and (2), we get
\[2I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \left( \frac{\tan^2 x}{1 + e^x} + \frac{e^x \tan^2 x}{1 + e^x} \right)dx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\left( 1 + e^x \right) \tan^2 x}{1 + e^x}dx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \tan^2 xdx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \left( \sec^2 x - 1 \right)dx\]
\[ \Rightarrow 2I = \tan x_{- \frac{\pi}{4}}^\frac{\pi}{4} - x_{- \frac{\pi}{4}}^\frac{\pi}{4} \]
\[ \Rightarrow 2I = \left[ \tan\frac{\pi}{4} - \tan\left( - \frac{\pi}{4} \right) \right] - \left[ \frac{\pi}{4} - \left( - \frac{\pi}{4} \right) \right]\]
\[ \Rightarrow 2I = \left( 1 + 1 \right) - \left( \frac{2\pi}{4} \right)\]
\[ \Rightarrow 2I = 2 - \frac{\pi}{2}\]
\[ \Rightarrow I = 1 - \frac{\pi}{4}\]
Notes
This answer does not matches with the given answer in the book.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate : `int1/(3+5cosx)dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate :
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is