Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[\int_0^3 \left| 3x - 1 \right| d x\]
\[\text{We know that}, \left| 3x - 1 \right| = \begin{cases} - \left( 3x - 1 \right)&,&0 \leq x \leq \frac{1}{3}\\\left( 3x - 1 \right)&,& \frac{1}{3} < x \leq 3\end{cases}\]
\[ \therefore I = = \int_0^\frac{1}{3} - \left( 3x + 1 \right) dx + \int_\frac{1}{3}^0 \left( 3x + 1 \right) dx\]
\[ \Rightarrow I = \left[ \frac{- 3 x^2}{2} - x \right]_0^\frac{1}{3} + \left[ \frac{3 x^2}{2} + x \right]_\frac{1}{3}^3 \]
\[ \Rightarrow I = - \frac{1}{6} + \frac{1}{3} - 0 + \frac{27}{2} + 3 - \frac{1}{6} - \frac{1}{3}\]
\[ \Rightarrow I = \frac{65}{6}\]
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate:
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.
Find: `int (dx)/sqrt(3 - 2x - x^2)`
Evaluate:
`int (1 + cosx)/(sin^2x)dx`