मराठी

Evaluate the Following Integral: 3 ∫ 0 | 3 X − 1 | D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integral:

\[\int\limits_0^3 \left| 3x - 1 \right| dx\]

 

बेरीज

उत्तर

\[\int_0^3 \left| 3x - 1 \right| d x\]
\[\text{We know that}, \left| 3x - 1 \right| = \begin{cases} - \left( 3x - 1 \right)&,&0 \leq x \leq \frac{1}{3}\\\left( 3x - 1 \right)&,& \frac{1}{3} < x \leq 3\end{cases}\]
\[ \therefore I = = \int_0^\frac{1}{3} - \left( 3x + 1 \right) dx + \int_\frac{1}{3}^0 \left( 3x + 1 \right) dx\]
\[ \Rightarrow I = \left[ \frac{- 3 x^2}{2} - x \right]_0^\frac{1}{3} + \left[ \frac{3 x^2}{2} + x \right]_\frac{1}{3}^3 \]
\[ \Rightarrow I = - \frac{1}{6} + \frac{1}{3} - 0 + \frac{27}{2} + 3 - \frac{1}{6} - \frac{1}{3}\]
\[ \Rightarrow I = \frac{65}{6}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.3 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.3 | Q 7 | पृष्ठ ५६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate :`int_0^(pi/2)1/(1+cosx)dx`

 


Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`


If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.


Evaluate the integral by using substitution.

`int_0^1 x/(x^2 +1)`dx


Evaluate the integral by using substitution.

`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`


Evaluate the integral by using substitution.

`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`


Evaluate the integral by using substitution.

`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`


Evaluate the integral by using substitution.

`int_0^2 dx/(x + 4 - x^2)`


Evaluate the integral by using substitution.

`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`


Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`


Evaluate of the following integral:

(i)  \[\int x^4 dx\]

 


Evaluate of the following integral: 

\[\int 3^x dx\]

Evaluate of the following integral:

\[\int 3^{2 \log_3} {}^x dx\]

Evaluate: 

\[\int\sqrt{\frac{1 + \cos 2x}{2}}dx\]

Evaluate: 

\[\int\frac{1}{a^x b^x}dx\]

Evaluate:

\[\int\frac{\cos 2x + 2 \sin^2 x}{\sin^2 x}dx\]

Evaluate:

\[\int\frac{e\log \sqrt{x}}{x}dx\]

\[\int\frac{2x}{\left( 2x + 1 \right)^2} dx\]

Evaluate the following integral:

\[\int\limits_0^{2\pi} \left| \sin x \right| dx\]

 


Evaluate the following integral:

\[\int\limits_2^8 \left| x - 5 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_0^4 \left| x - 1 \right| dx\]

Evaluate the following integral:

\[\int\limits_1^4 \left\{ \left| x - 1 \right| + \left| x - 2 \right| + \left| x - 4 \right| \right\} dx\]

 


Evaluate the following integral:

\[\int\limits_0^4 \left( \left| x \right| + \left| x - 2 \right| + \left| x - 4 \right| \right) dx\]

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx\]

 


Evaluate the following integral:

\[\int_{- \frac{3\pi}{2}}^{- \frac{\pi}{2}} \left\{ \sin^2 \left( 3\pi + x \right) + \left( \pi + x \right)^3 \right\}dx\]

Evaluate the following integral:

\[\int_0^{2\pi} \sin^{100} x \cos^{101} xdx\]

 


Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{a\sin x + b\sin x}{\sin x + \cos x}dx\]

 


Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .


Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .


Evaluate:  `int_-1^2 (|"x"|)/"x"d"x"`.


`int_0^1 x(1 - x)^5 "dx" =` ______.


Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is


Find: `int (dx)/sqrt(3 - 2x - x^2)`


The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is


Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×