Advertisements
Advertisements
प्रश्न
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
उत्तर
Let `I = int_0^(pi/2) sqrtsin phi cos^5 phi d phi`
`int_0^(pi/2) sin^(1/2) phi cos^4 phi cos phi d phi`
`int_0^(pi/2) sin^(1/2) phi. (1 - sin^2 phi)^2 . cos phi d phi`
On substituting `sin phi = t`,
`cos phi d phi = dt` and `phi = 0, t = 0,` When `phi = pi/2 t = 1`
Hence, `I = int_0^1 t^(1/2) (1 - t^2)^2 dt`
`I = int_0^1 t^(1/2) (1 + t^4 - 2t^2) dt`
`= int_0^1 (t^(1/2) + t^(9/2) - 2t^(5/2)) dt`
`= 2/3 [t^3]_0^1 + 2/11 [t^(11/2)]_0^1 - 2 xx 2/7 [t^(7/2)]_0^1`
`= 2/3 + 2/11 - 4/7`
`= (154 + 42 - 132)/231`
`= 64/231`
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate : `int1/(3+5cosx)dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate the integral by using substitution.
`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate the following definite integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate :
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
`int_0^(pi4) sec^4x "d"x` = ______.
Find: `int (dx)/sqrt(3 - 2x - x^2)`
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is
Evaluate:
`int (1 + cosx)/(sin^2x)dx`