English

Evaluate the integral by using substitution. ∫0π2sinϕcos5ϕdϕ - Mathematics

Advertisements
Advertisements

Question

Evaluate the integral by using substitution.

`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`

Sum

Solution

Let  `I = int_0^(pi/2) sqrtsin phi cos^5 phi  d  phi`

`int_0^(pi/2) sin^(1/2) phi cos^4 phi cos phi   d  phi`

`int_0^(pi/2) sin^(1/2) phi. (1 - sin^2 phi)^2 . cos phi  d  phi`

On substituting `sin phi = t`,

`cos phi  d  phi = dt` and `phi = 0, t = 0,` When `phi = pi/2 t = 1`

Hence, `I = int_0^1  t^(1/2) (1 - t^2)^2 dt`

`I = int_0^1  t^(1/2) (1 + t^4 - 2t^2) dt`

`= int_0^1 (t^(1/2) + t^(9/2) - 2t^(5/2)) dt`

`= 2/3 [t^3]_0^1 + 2/11 [t^(11/2)]_0^1 - 2 xx 2/7 [t^(7/2)]_0^1`

`= 2/3 + 2/11 - 4/7`

`= (154 + 42 - 132)/231`

`= 64/231`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.10 [Page 340]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.10 | Q 2 | Page 340

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate:  `int (1+logx)/(x(2+logx)(3+logx))dx`


Evaluate: `int1/(xlogxlog(logx))dx`


Evaluate :

`∫_0^π(4x sin x)/(1+cos^2 x) dx`


Evaluate: `intsinsqrtx/sqrtxdx`

 


Evaluate the integral by using substitution.

`int_0^2 xsqrt(x+2)`  (Put x + 2 = `t^2`)


Evaluate the integral by using substitution.

`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`


Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`


Evaluate of the following integral:

(i)  \[\int x^4 dx\]

 


Evaluate: 

\[\int\frac{2 \cos^2 x - \cos 2x}{\cos^2 x}dx\]

\[\int\frac{2x}{\left( 2x + 1 \right)^2} dx\]

Evaluate the following integral:

\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_0^3 \left| 3x - 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| x + 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_0^{\pi/2} \left| \cos 2x \right| dx\]

Evaluate the following integral:

\[\int\limits_2^8 \left| x - 5 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- \pi/2}^{\pi/2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} dx\]

 


Evaluate the following integral:

\[\int\limits_1^4 \left\{ \left| x - 1 \right| + \left| x - 2 \right| + \left| x - 4 \right| \right\} dx\]

 


Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}}dx\]

Evaluate each of the following integral:

\[\int_{- a}^a \frac{1}{1 + a^x}dx\]`, a > 0`

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 x}{1 + e^x}dx\]

Evaluate the following integral:

\[\int_{- \pi}^\pi \frac{2x\left( 1 + \sin x \right)}{1 + \cos^2 x}dx\]

Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .


Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .


Evaluate: `int_  e^x ((2+sin2x))/cos^2 x dx`


Evaluate:  `int_-1^2 (|"x"|)/"x"d"x"`.


Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.


Find: `int_  (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.


`int_0^1 x(1 - x)^5 "dx" =` ______.


`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.


`int_0^(pi4) sec^4x  "d"x` = ______.


Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is


Find: `int (dx)/sqrt(3 - 2x - x^2)`


Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.


Evaluate: `int x/(x^2 + 1)"d"x`


Evaluate:

`int (1 + cosx)/(sin^2x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×