English

Evaluate the Following Integral: 3 ∫ 0 | 3 X − 1 | D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integral:

\[\int\limits_0^3 \left| 3x - 1 \right| dx\]

 

Sum

Solution

\[\int_0^3 \left| 3x - 1 \right| d x\]
\[\text{We know that}, \left| 3x - 1 \right| = \begin{cases} - \left( 3x - 1 \right)&,&0 \leq x \leq \frac{1}{3}\\\left( 3x - 1 \right)&,& \frac{1}{3} < x \leq 3\end{cases}\]
\[ \therefore I = = \int_0^\frac{1}{3} - \left( 3x + 1 \right) dx + \int_\frac{1}{3}^0 \left( 3x + 1 \right) dx\]
\[ \Rightarrow I = \left[ \frac{- 3 x^2}{2} - x \right]_0^\frac{1}{3} + \left[ \frac{3 x^2}{2} + x \right]_\frac{1}{3}^3 \]
\[ \Rightarrow I = - \frac{1}{6} + \frac{1}{3} - 0 + \frac{27}{2} + 3 - \frac{1}{6} - \frac{1}{3}\]
\[ \Rightarrow I = \frac{65}{6}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.3 [Page 56]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.3 | Q 7 | Page 56

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate:  `int (1+logx)/(x(2+logx)(3+logx))dx`


Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`


 

Evaluate `∫_0^(3/2)|x cosπx|dx`

 

If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.


Evaluate the integral by using substitution.

`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`


Evaluate the integral by using substitution.

`int_(-1)^1 dx/(x^2 + 2x  + 5)`


Evaluate of the following integral: 

\[\int\frac{1}{x^5}dx\]

Evaluate of the following integral:

\[\int 3^{2 \log_3} {}^x dx\]

Evaluate : 

\[\int\frac{e^{6 \log_e x} - e^{5 \log_e x}}{e^{4 \log_e x} - e^{3 \log_e x}}dx\]

Evaluate the following integral:

\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 6}^6 \left| x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_1^2 \left| x - 3 \right| dx\]

Evaluate the following integral:

\[\int\limits_0^{\pi/2} \left| \cos 2x \right| dx\]

Evaluate the following integral:

\[\int\limits_0^{2\pi} \left| \sin x \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- \pi/4}^{\pi/4} \left| \sin x \right| dx\]

Evaluate the following integral:

\[\int\limits_2^8 \left| x - 5 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_1^4 \left\{ \left| x - 1 \right| + \left| x - 2 \right| + \left| x - 4 \right| \right\} dx\]

 


Evaluate each of the following integral:

\[\int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\]

 


Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}}dx\]

Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx\]

 


\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]

Evaluate the following integral:

\[\int_0^\pi x\sin x \cos^2 xdx\]

Evaluate the following integral:

\[\int_{- \frac{3\pi}{2}}^{- \frac{\pi}{2}} \left\{ \sin^2 \left( 3\pi + x \right) + \left( \pi + x \right)^3 \right\}dx\]

Evaluate the following integral:

\[\int_0^\pi \left( \frac{x}{1 + \sin^2 x} + \cos^7 x \right)dx\]

Evaluate 

\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]


Evaluate : 

\[\int\limits_0^{3/2} \left| x \sin \pi x \right|dx\]

Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .


Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .


Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.


Find: `int_  (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.


Evaluate the following:

`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`


Evaluate the following:

`int "dt"/sqrt(3"t" - 2"t"^2)`


Find: `int (dx)/sqrt(3 - 2x - x^2)`


Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.


Evaluate: `int x/(x^2 + 1)"d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×