English

Evaluate the Following Integral: π / 4 ∫ − π / 4 | Sin X | D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integral:

\[\int\limits_{- \pi/4}^{\pi/4} \left| \sin x \right| dx\]
Sum

Solution

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \left| \sin x \right| d x\]
\[\text{We know that}, \left| \sin x \right| = \begin{cases} - \sin x &,& - \frac{\pi}{4} \leq x \leq 0\\\sin x&,& 0 < x \leq \frac{\pi}{4}\end{cases}\]
\[ \therefore I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \left| \sin x \right| d x\]
\[ \Rightarrow I = \int_{- \frac{\pi}{4}}^0 - \sin x dx + \int_0^\frac{\pi}{4} \sin x dx\]
\[ \Rightarrow I = \left[ \cos x \right]_\frac{- \pi}{4}^0 - \left[ \cos x \right]_0^\frac{- \pi}{4} \]
\[ \Rightarrow I = 1 - \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} + 1\]
\[ \Rightarrow I = 2 - \frac{2}{\sqrt{2}}\]
\[ \Rightarrow I = 2 - \sqrt{2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.3 [Page 56]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.3 | Q 13 | Page 56

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate:  `int (1+logx)/(x(2+logx)(3+logx))dx`


Evaluate : `int1/(3+5cosx)dx`


 

Evaluate `int_(-1)^2|x^3-x|dx`

 

 

find `∫_2^4 x/(x^2 + 1)dx`

 

If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.


Evaluate the integral by using substitution.

`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`


Evaluate the integral by using substitution.

`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`


Evaluate the integral by using substitution.

`int_0^2 xsqrt(x+2)`  (Put x + 2 = `t^2`)


`int 1/(1 + cos x)` dx = _____

A) `tan(x/2) + c`

B) `2 tan (x/2) + c`

C) -`cot (x/2) + c`

D) -2 `cot (x/2)` + c


Evaluate of the following integral:

(i)  \[\int x^4 dx\]

 


Evaluate of the following integral: 

\[\int 3^x dx\]

Evaluate of the following integral:

\[\int\frac{1}{\sqrt[3]{x^2}}dx\]

\[\int\frac{2x}{\left( 2x + 1 \right)^2} dx\]

Evaluate the following integral:

\[\int\limits_{- 4}^4 \left| x + 2 \right| dx\]

Evaluate the following integral:

\[\int\limits_{- \pi/2}^{\pi/2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} dx\]

 


Evaluate the following integral:

\[\int\limits_{- 5}^0 f\left( x \right) dx, where\ f\left( x \right) = \left| x \right| + \left| x + 2 \right| + \left| x + 5 \right|\]

 


Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}}dx\]

Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}}dx\]

 


Evaluate each of the following integral:

\[\int_{- a}^a \frac{1}{1 + a^x}dx\]`, a > 0`

Evaluate the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} x}dx\]

 


Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{\tan^7 x}{\tan^7 x + \cot^7 x}dx\]

Evaluate the following integral:

\[\int_2^8 \frac{\sqrt{10 - x}}{\sqrt{x} + \sqrt{10 - x}}dx\]

Evaluate the following integral:

\[\int_{- \pi}^\pi \frac{2x\left( 1 + \sin x \right)}{1 + \cos^2 x}dx\]

Evaluate the following integral:

\[\int_0^\pi \left( \frac{x}{1 + \sin^2 x} + \cos^7 x \right)dx\]

Evaluate 

\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]


Evaluate : 

\[\int\limits_0^{3/2} \left| x \sin \pi x \right|dx\]

Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .


Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .


Evaluate:  `int_-1^2 (|"x"|)/"x"d"x"`.


Find: `int_  (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.


`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?


If `I_n = int_0^(pi/4) tan^n theta  "d"theta " then " I_8 + I_6` equals ______.


`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.


Evaluate the following:

`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`


Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is


`int_0^1 x^2e^x dx` = ______.


Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.


Evaluate: `int x/(x^2 + 1)"d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×