English

Evaluate the Following Integral: ∫ π 0 ( X 1 + Sin 2 X + Cos 7 X ) D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integral:

\[\int_0^\pi \left( \frac{x}{1 + \sin^2 x} + \cos^7 x \right)dx\]
Sum

Solution

\[\text{Let I }=\int_0^\pi \left( \frac{x}{1 + \sin^2 x} + \cos^7 x \right)dx ..................(1)\]

Then,

\[I = \int_0^\pi \left( \frac{\pi - x}{1 + \sin^2 \left( \pi - x \right)} + \cos^7 \left( \pi - x \right) \right)dx\]
\[ = \int_0^\pi \left( \frac{\pi - x}{1 + \sin^2 x} - \cos^7 x \right)dx ..................(2)\]

Adding (1) and (2), we get

\[2I = \int_0^\pi \left( \frac{x}{1 + \sin^2 x} + \cos^7 x + \frac{\pi - x}{1 + \sin^2 x} - \cos^7 x \right)dx\]
\[ \Rightarrow 2I = \pi \int_0^\pi \frac{1}{1 + \sin^2 x}dx\]

Dividing the numerator and denominator by cos2x, we get

\[2I = \pi \int_0^\pi \frac{\sec^2 x}{\sec^2 x + \tan^2 x}dx\]
\[ \Rightarrow 2I = \pi \int_0^\pi \frac{\sec^2 x}{1 + 2 \tan^2 x}dx\]
\[ \Rightarrow 2I = 2\pi \int_0^\frac{\pi}{2} \frac{\sec^2 x}{1 + 2 \tan^2 x}dx .....................\left[ \int_0^{2a} f\left( x \right)dx = \begin{cases}2 \int_0^a f\left( x \right)dx, & \text{if }f\left( 2a - x \right) = f\left( x \right) \\ 0, & \text{if }f\left( 2a - x \right) = - f\left( x \right)\end{cases} \right]\]

Put tan x = z

Then

\[\sec^2 xdx = dz\]

When

\[x \to 0, z \to 0\]

When

\[x \to \frac{\pi}{2}, z \to \infty\]

\[\therefore 2I = 2\pi \int_0^\infty \frac{dz}{1 + \left( \sqrt{2}z \right)^2}\]
\[ \Rightarrow 2I = \left.2\pi \times \frac{\tan^{- 1} \sqrt{2}z}{\sqrt{2}}\right|_0^\infty \]
\[ \Rightarrow I = \frac{\pi}{\sqrt{2}}\left( \tan^{- 1} \infty - \tan^{- 1} 0 \right)\]
\[ \Rightarrow I = \frac{\pi}{\sqrt{2}} \times \left( \frac{\pi}{2} - 0 \right)\]
\[ \Rightarrow I = \frac{\pi^2}{2\sqrt{2}}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.5 [Page 95]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.5 | Q 36 | Page 95

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate:  `int (1+logx)/(x(2+logx)(3+logx))dx`


Evaluate :`int_0^(pi/2)1/(1+cosx)dx`

 


Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`


 

Evaluate `∫_0^(3/2)|x cosπx|dx`

 

 

Evaluate `int_(-1)^2|x^3-x|dx`

 

Evaluate :

`∫_0^π(4x sin x)/(1+cos^2 x) dx`


Evaluate the integral by using substitution.

`int_0^1 x/(x^2 +1)`dx


Evaluate the integral by using substitution.

`int_0^2 dx/(x + 4 - x^2)`


Evaluate the integral by using substitution.

`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`


Evaluate of the following integral: 

\[\int 3^x dx\]

Evaluate of the following integral:

\[\int 3^{2 \log_3} {}^x dx\]

Evaluate:

\[\int\sqrt{\frac{1 - \cos 2x}{2}}dx\]

Evaluate : 

\[\int\frac{e^{6 \log_e x} - e^{5 \log_e x}}{e^{4 \log_e x} - e^{3 \log_e x}}dx\]

Evaluate: 

\[\int\frac{1}{a^x b^x}dx\]

Evaluate:

\[\int\frac{e\log \sqrt{x}}{x}dx\]

Evaluate the following integral:

\[\int\limits_{- 4}^4 \left| x + 2 \right| dx\]

Evaluate the following integral:

\[\int\limits_1^2 \left| x - 3 \right| dx\]

Evaluate the following integral:

\[\int\limits_2^8 \left| x - 5 \right| dx\]

 


Evaluate each of the following integral:

\[\int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{x^{11} - 3 x^9 + 5 x^7 - x^5 + 1}{\cos^2 x}dx\]

Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{\tan^7 x}{\tan^7 x + \cot^7 x}dx\]

Evaluate the following integral:

\[\int_0^\pi x\sin x \cos^2 xdx\]

Evaluate the following integral:

\[\int_{- \frac{3\pi}{2}}^{- \frac{\pi}{2}} \left\{ \sin^2 \left( 3\pi + x \right) + \left( \pi + x \right)^3 \right\}dx\]

Evaluate the following integral:

\[\int_0^{2\pi} \sin^{100} x \cos^{101} xdx\]

 


Evaluate : 

\[\int\limits_0^{3/2} \left| x \sin \pi x \right|dx\]

Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .


Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .


Evaluate: `int_  e^x ((2+sin2x))/cos^2 x dx`


Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x"  d"x"`.


`int_0^1 x(1 - x)^5 "dx" =` ______.


`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.


`int_0^(pi4) sec^4x  "d"x` = ______.


Evaluate the following:

`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`


Evaluate: `int x/(x^2 + 1)"d"x`


Evaluate:

`int (1 + cosx)/(sin^2x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×