Advertisements
Advertisements
Question
Evaluate the following integral:
Solution
\[\text{Let I }=\int_0^\pi \left( \frac{x}{1 + \sin^2 x} + \cos^7 x \right)dx ..................(1)\]
Then,
\[I = \int_0^\pi \left( \frac{\pi - x}{1 + \sin^2 \left( \pi - x \right)} + \cos^7 \left( \pi - x \right) \right)dx\]
\[ = \int_0^\pi \left( \frac{\pi - x}{1 + \sin^2 x} - \cos^7 x \right)dx ..................(2)\]
Adding (1) and (2), we get
\[2I = \int_0^\pi \left( \frac{x}{1 + \sin^2 x} + \cos^7 x + \frac{\pi - x}{1 + \sin^2 x} - \cos^7 x \right)dx\]
\[ \Rightarrow 2I = \pi \int_0^\pi \frac{1}{1 + \sin^2 x}dx\]
Dividing the numerator and denominator by cos2x, we get
\[2I = \pi \int_0^\pi \frac{\sec^2 x}{\sec^2 x + \tan^2 x}dx\]
\[ \Rightarrow 2I = \pi \int_0^\pi \frac{\sec^2 x}{1 + 2 \tan^2 x}dx\]
\[ \Rightarrow 2I = 2\pi \int_0^\frac{\pi}{2} \frac{\sec^2 x}{1 + 2 \tan^2 x}dx .....................\left[ \int_0^{2a} f\left( x \right)dx = \begin{cases}2 \int_0^a f\left( x \right)dx, & \text{if }f\left( 2a - x \right) = f\left( x \right) \\ 0, & \text{if }f\left( 2a - x \right) = - f\left( x \right)\end{cases} \right]\]
Put tan x = z
Then
When
When
\[\therefore 2I = 2\pi \int_0^\infty \frac{dz}{1 + \left( \sqrt{2}z \right)^2}\]
\[ \Rightarrow 2I = \left.2\pi \times \frac{\tan^{- 1} \sqrt{2}z}{\sqrt{2}}\right|_0^\infty \]
\[ \Rightarrow I = \frac{\pi}{\sqrt{2}}\left( \tan^{- 1} \infty - \tan^{- 1} 0 \right)\]
\[ \Rightarrow I = \frac{\pi}{\sqrt{2}} \times \left( \frac{\pi}{2} - 0 \right)\]
\[ \Rightarrow I = \frac{\pi^2}{2\sqrt{2}}\]
APPEARS IN
RELATED QUESTIONS
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate :
Evaluate:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate :
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
`int_0^1 x(1 - x)^5 "dx" =` ______.
`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.
`int_0^(pi4) sec^4x "d"x` = ______.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
Evaluate: `int x/(x^2 + 1)"d"x`
Evaluate:
`int (1 + cosx)/(sin^2x)dx`