Advertisements
Advertisements
Question
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Solution
\[Let\ I = \int\limits_0^\pi \frac{x}{1 + \sin\alpha \sin x}dx\]
\[ \Rightarrow I = \int\limits_0^\pi \frac{\pi - x}{1 + \sin\alpha \sin\left( \pi - x \right)}dx ....................\left[ \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ \Rightarrow I = \int\limits_0^\pi \frac{\pi}{1 + \sin\alpha \sin x}dx - \int\limits_0^\pi \frac{x}{1 + \sin\alpha \sin x}dx\]
\[ \Rightarrow I = \int\limits_0^\pi \frac{\pi}{1 + \sin\alpha \sin x}dx - I\]
\[ \Rightarrow 2I = \int\limits_0^\pi \frac{\pi}{1 + \sin\alpha \sin x}dx\]
\[ \Rightarrow 2I = \pi \int\limits_0^\pi \frac{1}{1 + sin\ \alpha\ sinx}dx\]
\[\text{Substituting} \sin x = \frac{2\tan\frac{x}{2}}{1 + \tan^2 \frac{x}{2}}, \text{we get}\]
\[2I = \pi \int\limits_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} + sin\alpha \times 2\tan\frac{x}{2}}dx\]
\[I = \frac{\pi}{2} \int\limits_0^\pi \frac{\sec^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} + \sin\alpha \times 2\tan\frac{x}{2}}dx\]
\[Let \tan\frac{x}{2} = t, d\left( \tan\frac{x}{2} \right) = dt\]
\[\Rightarrow \sec^2 \frac{x}{2}dx = 2dt\]
\[Also, \]
\[When\ x \to 0, t \to \tan0 = 0\]
\[When\ x \to \pi, t \to \tan\frac{\pi}{2} = \infty \]
\[ \therefore I = \frac{\pi}{2} \int\limits_0^\infty \frac{2dt}{t^2 + 2t\sin\alpha + 1}\]
\[ \Rightarrow I = \pi \int\limits_0^\infty \frac{1}{\left( t + \sin\alpha \right)^2 + \cos^2 \alpha}dt\]
\[ \Rightarrow I = \frac{\pi}{\cos\alpha} \left[ \tan^{- 1} \left( \frac{t + \sin\alpha}{\cos\alpha} \right) \right]_0^\infty \]
\[ \Rightarrow I = \frac{\pi}{\cos\alpha}\left[ \tan^{- 1} \infty - \tan^{- 1} \left( \tan\alpha \right) \right]\]
\[ \Rightarrow I = \frac{\pi}{\cos\alpha}\left( \frac{\pi}{2} - \alpha \right)\]
APPEARS IN
RELATED QUESTIONS
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
find `∫_2^4 x/(x^2 + 1)dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`
Evaluate the integral by using substitution.
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
Evaluate of the following integral:
Evaluate:
Evaluate :
Evaluate the following definite integral:
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
`int_0^1 x(1 - x)^5 "dx" =` ______.
Find: `int (dx)/sqrt(3 - 2x - x^2)`
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.