English

Evaluate π ∫ 0 X 1 + Sin α Sin X D X - Mathematics

Advertisements
Advertisements

Question

Evaluate 

\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]

Sum

Solution

\[Let\ I = \int\limits_0^\pi \frac{x}{1 + \sin\alpha \sin x}dx\]
\[ \Rightarrow I = \int\limits_0^\pi \frac{\pi - x}{1 + \sin\alpha \sin\left( \pi - x \right)}dx ....................\left[ \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ \Rightarrow I = \int\limits_0^\pi \frac{\pi}{1 + \sin\alpha \sin x}dx - \int\limits_0^\pi \frac{x}{1 + \sin\alpha \sin x}dx\]
\[ \Rightarrow I = \int\limits_0^\pi \frac{\pi}{1 + \sin\alpha \sin x}dx - I\]
\[ \Rightarrow 2I = \int\limits_0^\pi \frac{\pi}{1 + \sin\alpha \sin x}dx\]
\[ \Rightarrow 2I = \pi \int\limits_0^\pi \frac{1}{1 + sin\ \alpha\ sinx}dx\]

\[\text{Substituting}  \sin x = \frac{2\tan\frac{x}{2}}{1 + \tan^2 \frac{x}{2}}, \text{we get}\]

\[2I = \pi \int\limits_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} + sin\alpha \times 2\tan\frac{x}{2}}dx\]

\[I = \frac{\pi}{2} \int\limits_0^\pi \frac{\sec^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} + \sin\alpha \times 2\tan\frac{x}{2}}dx\]

\[Let \tan\frac{x}{2} = t, d\left( \tan\frac{x}{2} \right) = dt\]

\[\Rightarrow \sec^2 \frac{x}{2}dx = 2dt\]

\[Also, \]

\[When\ x \to 0, t \to \tan0 = 0\]

\[When\ x \to \pi, t \to \tan\frac{\pi}{2} = \infty \]

\[ \therefore I = \frac{\pi}{2} \int\limits_0^\infty \frac{2dt}{t^2 + 2t\sin\alpha + 1}\]

\[ \Rightarrow I = \pi \int\limits_0^\infty \frac{1}{\left( t + \sin\alpha \right)^2 + \cos^2 \alpha}dt\]

\[ \Rightarrow I = \frac{\pi}{\cos\alpha} \left[ \tan^{- 1} \left( \frac{t + \sin\alpha}{\cos\alpha} \right) \right]_0^\infty \]

\[ \Rightarrow I = \frac{\pi}{\cos\alpha}\left[ \tan^{- 1} \infty - \tan^{- 1} \left( \tan\alpha \right) \right]\]

\[ \Rightarrow I = \frac{\pi}{\cos\alpha}\left( \frac{\pi}{2} - \alpha \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.5 [Page 95]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.5 | Q 37 | Page 95

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate:  `int (1+logx)/(x(2+logx)(3+logx))dx`


 

find `∫_2^4 x/(x^2 + 1)dx`

 

Evaluate :

`∫_0^π(4x sin x)/(1+cos^2 x) dx`


If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.


Evaluate the integral by using substitution.

`int_0^1 x/(x^2 +1)`dx


Evaluate the integral by using substitution.

`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`


Evaluate the integral by using substitution.

`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`


Evaluate the integral by using substitution.

`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`


Evaluate the integral by using substitution.

`int_0^2 dx/(x + 4 - x^2)`


Evaluate the integral by using substitution.

`int_(-1)^1 dx/(x^2 + 2x  + 5)`


Evaluate of the following integral:

\[\int\frac{1}{\sqrt[3]{x^2}}dx\]

Evaluate:

\[\int\sqrt{\frac{1 - \cos 2x}{2}}dx\]

Evaluate : 

\[\int\frac{e^{6 \log_e x} - e^{5 \log_e x}}{e^{4 \log_e x} - e^{3 \log_e x}}dx\]

Evaluate the following definite integral:

\[\int_0^1 \frac{1}{\sqrt{\left( x - 1 \right)\left( 2 - x \right)}}dx\]

Evaluate the following integral:

\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 6}^6 \left| x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| x + 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_1^2 \left| x - 3 \right| dx\]

Evaluate the following integral:

\[\int\limits_{- \pi/4}^{\pi/4} \left| \sin x \right| dx\]

Evaluate the following integral:

\[\int\limits_2^8 \left| x - 5 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- \pi/2}^{\pi/2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} dx\]

 


Evaluate the following integral:

\[\int\limits_1^4 \left\{ \left| x - 1 \right| + \left| x - 2 \right| + \left| x - 4 \right| \right\} dx\]

 


Evaluate each of the following integral:

\[\int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{x^{11} - 3 x^9 + 5 x^7 - x^5 + 1}{\cos^2 x}dx\]

\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]

Evaluate the following integral:

\[\int_{- 2}^2 \frac{3 x^3 + 2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]

Evaluate the following integral:

\[\int_0^\pi \left( \frac{x}{1 + \sin^2 x} + \cos^7 x \right)dx\]

Evaluate:  `int_-1^2 (|"x"|)/"x"d"x"`.


Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.


`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?


`int_0^1 x(1 - x)^5 "dx" =` ______.


Find: `int (dx)/sqrt(3 - 2x - x^2)`


Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.


If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×