Advertisements
Advertisements
Question
Evaluate the integral by using substitution.
`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`
Solution
Let `int_0^1 sin^-1 ((2x)/(1 + x^2)) dx`
Substituting x = tan θ
`dx = sec^2 theta d theta`
And `(2 tan theta)/(1 + tan^2 theta) = sin 2 theta`
When x = 0
⇒ θ = 0
or x = 1
`=> theta = pi/4`
Hence, `int_0^(pi/4) sin^-1 (sin 2 theta) xx sec^2 theta d theta`
`2 = int_0^(pi/4) theta sec^2 theta d theta`
`= 2 [(theta . tan theta)_0^(pi/4) - int_0^(pi/4) 1 * tan theta d theta]`
`= 2 [pi/4 tan pi/4 - 0] - 2 [log cos theta]_0^(pi/4)`
`= pi/4 + 2 [log cos pi/4 - log cos 0]`
`= pi/2 + 2 [log 1/sqrt2 - log 1]`
`= pi/2 - log 2`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate :
Evaluate:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
`int_0^(pi4) sec^4x "d"x` = ______.
Find: `int (dx)/sqrt(3 - 2x - x^2)`
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.
Evaluate: `int x/(x^2 + 1)"d"x`
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.