Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \left| \sin x \right| d x\]
\[\text{We know that}, \left| \sin x \right| = \begin{cases} - \sin x &,& - \frac{\pi}{4} \leq x \leq 0\\\sin x&,& 0 < x \leq \frac{\pi}{4}\end{cases}\]
\[ \therefore I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \left| \sin x \right| d x\]
\[ \Rightarrow I = \int_{- \frac{\pi}{4}}^0 - \sin x dx + \int_0^\frac{\pi}{4} \sin x dx\]
\[ \Rightarrow I = \left[ \cos x \right]_\frac{- \pi}{4}^0 - \left[ \cos x \right]_0^\frac{- \pi}{4} \]
\[ \Rightarrow I = 1 - \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} + 1\]
\[ \Rightarrow I = 2 - \frac{2}{\sqrt{2}}\]
\[ \Rightarrow I = 2 - \sqrt{2}\]
APPEARS IN
संबंधित प्रश्न
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate :
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate the following integral:
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
Find: `int_ (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is