Advertisements
Advertisements
प्रश्न
Find: `int_ (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.
उत्तर
`( 3x + 5)sqrt(5 + 4x - 2x^2) dx`
Let 3x + 5 = A(4 - 4x) + B
⇒ A = `-3/4, B = 8`
I = `3/4(4 - 4x)sqrt(5 + 4x + 2x^2) dx + 8 sqrt(5 + 4x - 2x^2)dx`
= `-3/4 I_1 + 8l_2 ("let")`
For I1, put 5 + 4x = - 2x2 = t
⇒ (4 - 4x) dx = dt
`-3/4 I_1 = - 3/4 sqrtt dt = - 3/4 xx 2/3 t^(3/2)`
= `-1/2 (5 + 4x - 2x^2 )^(3/2)`
`8I_2 = 8sqrt2 sqrt(7/2 - ( x - 1)^2) dx`
I = `-1/2 (5 + 4x - 2x^2 )^(3/2) + 4sqrt2(x - 1) sqrt(5/2 + 2x - x^2) + 14sqrt2 sin^-1 (sqrt2(x - 1))/sqrt7 + C`
APPEARS IN
संबंधित प्रश्न
Evaluate `int_(-1)^2|x^3-x|dx`
find `∫_2^4 x/(x^2 + 1)dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate:
Evaluate :
Evaluate:
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate the following integral:
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
`int_0^1 x^2e^x dx` = ______.
Evaluate: `int x/(x^2 + 1)"d"x`