हिंदी

Find: ∫ ( 3 X + 5 ) √ 5 + 4 X − 2 X 2 D X . - Mathematics

Advertisements
Advertisements

प्रश्न

Find: `int_  (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.

योग

उत्तर

`( 3x + 5)sqrt(5 + 4x - 2x^2) dx`

Let 3x + 5 = A(4 - 4x) + B

⇒ A = `-3/4, B = 8`

I = `3/4(4 - 4x)sqrt(5 + 4x + 2x^2) dx + 8 sqrt(5 + 4x - 2x^2)dx`

= `-3/4 I_1 + 8l_2 ("let")`

For I1, put 5 + 4x = - 2x2 = t

⇒ (4 - 4x) dx = dt

`-3/4 I_1 = - 3/4 sqrtt dt = - 3/4 xx 2/3 t^(3/2)`

= `-1/2 (5 + 4x - 2x^2 )^(3/2)`

`8I_2 = 8sqrt2 sqrt(7/2 - ( x - 1)^2) dx`

I = `-1/2 (5 + 4x - 2x^2 )^(3/2) + 4sqrt2(x - 1) sqrt(5/2 + 2x - x^2) + 14sqrt2 sin^-1  (sqrt2(x - 1))/sqrt7 + C`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March) All India Set 1 E

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

 

Evaluate `int_(-1)^2|x^3-x|dx`

 

 

find `∫_2^4 x/(x^2 + 1)dx`

 

Evaluate :

`∫_0^π(4x sin x)/(1+cos^2 x) dx`


Evaluate the integral by using substitution.

`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`


Evaluate the integral by using substitution.

`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`


Evaluate the integral by using substitution.

`int_0^2 xsqrt(x+2)`  (Put x + 2 = `t^2`)


Evaluate the integral by using substitution.

`int_(-1)^1 dx/(x^2 + 2x  + 5)`


Evaluate of the following integral:

(i)  \[\int x^4 dx\]

 


Evaluate of the following integral: 

\[\int\frac{1}{x^{3/2}}dx\]

Evaluate:

\[\int\sqrt{\frac{1 - \cos 2x}{2}}dx\]

Evaluate : 

\[\int\frac{e^{6 \log_e x} - e^{5 \log_e x}}{e^{4 \log_e x} - e^{3 \log_e x}}dx\]

Evaluate: 

\[\int\frac{1}{a^x b^x}dx\]

Evaluate the following integral:

\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_1^2 \left| x - 3 \right| dx\]

Evaluate the following integral:

\[\int\limits_0^4 \left( \left| x \right| + \left| x - 2 \right| + \left| x - 4 \right| \right) dx\]

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 x}{1 + e^x}dx\]

Evaluate the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} x}dx\]

 


Evaluate the following integral:

\[\int_2^8 \frac{\sqrt{10 - x}}{\sqrt{x} + \sqrt{10 - x}}dx\]

Evaluate the following integral:

\[\int_0^\pi \left( \frac{x}{1 + \sin^2 x} + \cos^7 x \right)dx\]

Evaluate 

\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]


Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{a\sin x + b\sin x}{\sin x + \cos x}dx\]

 


Evaluate: `int_  e^x ((2+sin2x))/cos^2 x dx`


If `I_n = int_0^(pi/4) tan^n theta  "d"theta " then " I_8 + I_6` equals ______.


Evaluate the following:

`int "dt"/sqrt(3"t" - 2"t"^2)`


`int_0^1 x^2e^x dx` = ______.


Evaluate: `int x/(x^2 + 1)"d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×