हिंदी

Evaluate Each of the Following Integral: ∫ π 3 − π 3 1 1 + E T a N X D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx\]

 

योग

उत्तर

\[\text{Let I} =\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx.................\left(1\right)\]

Then,

\[I = \int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\left[ \frac{\pi}{3} + \left( - \frac{\pi}{3} \right) - x \right]}dx ..................\left[ \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ = \int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^{\ tan}\left( - x \right)}dx\]
\[ = \int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^{{- \ tan x}}}dx\]
\[ = \int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{e^{\ tan} x}{e^{\ tan} x + 1}dx . . . . . \left( 2 \right)\]

Adding (1) and (2), we get

\[2I = \int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1 + e^{\ tan x}}{1 + e^{\ tan x}}dx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{3}}^\frac{\pi}{3} dx\]
\[ \Rightarrow 2I = \left.x\right|_{- \frac{\pi}{3}}^\frac{\pi}{3} \]
\[ \Rightarrow 2I = \frac{\pi}{3} - \left( - \frac{\pi}{3} \right) = \frac{2\pi}{3}\]
\[ \Rightarrow I = \frac{\pi}{3}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.4 [पृष्ठ ६१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.4 | Q 7 | पृष्ठ ६१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate :`int_0^(pi/2)1/(1+cosx)dx`

 


 

Evaluate `∫_0^(3/2)|x cosπx|dx`

 

Evaluate :

`∫_(-pi)^pi (cos ax−sin bx)^2 dx`


 

find `∫_2^4 x/(x^2 + 1)dx`

 

If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.


Evaluate :

`int_e^(e^2) dx/(xlogx)`


Evaluate: `intsinsqrtx/sqrtxdx`

 


Evaluate the integral by using substitution.

`int_0^1 x/(x^2 +1)`dx


Evaluate the integral by using substitution.

`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`


Evaluate of the following integral:

(i)  \[\int x^4 dx\]

 


Evaluate of the following integral: 

\[\int 3^x dx\]

Evaluate of the following integral:

\[\int 3^{2 \log_3} {}^x dx\]

Evaluate of the following integral:

\[\int \log_x \text{x  dx}\] 

Evaluate: 

\[\int\sqrt{\frac{1 + \cos 2x}{2}}dx\]

Evaluate:

\[\int\sqrt{\frac{1 - \cos 2x}{2}}dx\]

Evaluate the following integral:

\[\int\limits_0^3 \left| 3x - 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_1^2 \left| x - 3 \right| dx\]

Evaluate the following integral:

\[\int\limits_0^{2\pi} \left| \sin x \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 5}^0 f\left( x \right) dx, where\ f\left( x \right) = \left| x \right| + \left| x + 2 \right| + \left| x + 5 \right|\]

 


Evaluate the following integral:

\[\int\limits_0^4 \left( \left| x \right| + \left| x - 2 \right| + \left| x - 4 \right| \right) dx\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{x^{11} - 3 x^9 + 5 x^7 - x^5 + 1}{\cos^2 x}dx\]

Evaluate the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} x}dx\]

 


Evaluate the following integral:

\[\int_2^8 \frac{\sqrt{10 - x}}{\sqrt{x} + \sqrt{10 - x}}dx\]

Evaluate the following integral:

\[\int_{- \pi}^\pi \frac{2x\left( 1 + \sin x \right)}{1 + \cos^2 x}dx\]

Evaluate : 

\[\int\limits_0^{3/2} \left| x \sin \pi x \right|dx\]

Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .


Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .


Evaluate: `int_  e^x ((2+sin2x))/cos^2 x dx`


Find: `int_  (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.


Find: `int (dx)/sqrt(3 - 2x - x^2)`


`int_0^1 x^2e^x dx` = ______.


If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×