Advertisements
Advertisements
प्रश्न
Evaluate each of the following integral:
उत्तर
\[\text{Let I} =\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx.................\left(1\right)\]
Then,
\[I = \int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\left[ \frac{\pi}{3} + \left( - \frac{\pi}{3} \right) - x \right]}dx ..................\left[ \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ = \int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^{\ tan}\left( - x \right)}dx\]
\[ = \int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^{{- \ tan x}}}dx\]
\[ = \int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{e^{\ tan} x}{e^{\ tan} x + 1}dx . . . . . \left( 2 \right)\]
Adding (1) and (2), we get
\[2I = \int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1 + e^{\ tan x}}{1 + e^{\ tan x}}dx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{3}}^\frac{\pi}{3} dx\]
\[ \Rightarrow 2I = \left.x\right|_{- \frac{\pi}{3}}^\frac{\pi}{3} \]
\[ \Rightarrow 2I = \frac{\pi}{3} - \left( - \frac{\pi}{3} \right) = \frac{2\pi}{3}\]
\[ \Rightarrow I = \frac{\pi}{3}\]
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
find `∫_2^4 x/(x^2 + 1)dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
Evaluate the integral by using substitution.
`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate :
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Find: `int_ (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.
Find: `int (dx)/sqrt(3 - 2x - x^2)`
`int_0^1 x^2e^x dx` = ______.
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.