Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[I = \int_{- 5}^0 \left\{ \left| x \right| + \left| x + 2 \right| + \left| x + 5 \right| \right\} dx\]
\[ \Rightarrow I = \int_{- 5}^0 \left| x \right| d x + \int_{- 5}^0 \left| x + 2 \right| d x + \int_{- 5}^0 \left| x + 5 \right| d x\]
\[\text{We know that}, \left| x \right| = \begin{cases} - x &,& - 5 \leq x \leq 0\\x&,& x > 0\end{cases}\]
\[\left| x + 2 \right| = \begin{cases} - \left( x + 2 \right) &,& - 5 \leq x \leq - 2\\x + 2&,& - 2 < x \leq 0\end{cases}\]
\[\left| x + 5 \right| = \begin{cases} - \left( x + 5 \right) &,& - 5 \leq x \leq 0\\x + 5&,& x > - 5\end{cases}\]
\[ \therefore I = - \int_{- 5}^0 x d x - \int_{- 5}^{- 2} \left( x + 2 \right) d x + \int_{- 2}^0 \left( x + 2 \right) d x + \int_{- 5}^0 \left( x + 5 \right) d x\]
\[ \Rightarrow I = - \left[ \frac{x^2}{2} \right]_{- 5}^0 - \left[ \frac{x^2}{2} + 2x \right]_{- 5}^{- 2} + \left[ \frac{x^2}{2} + 2x \right]_{- 2}^0 + \left[ \frac{x^2}{2} + 5x \right]_{- 5}^0 \]
\[ \Rightarrow I = \frac{25}{2} - \left( 2 - 4 - \frac{25}{2} + 10 \right) - 2 + 4 + \left( - \frac{25}{2} + 25 \right)\]
\[ \Rightarrow I = \frac{63}{2}\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int1/(3+5cosx)dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate :
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate :
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
`int_0^1 x^2e^x dx` = ______.
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.
Evaluate: `int x/(x^2 + 1)"d"x`
Evaluate:
`int (1 + cosx)/(sin^2x)dx`