हिंदी

Evaluate the Following Integral: 0 ∫ − 5 F ( X ) D X , W H E R E F ( X ) = | X | + | X + 2 | + | X + 5 | - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integral:

\[\int\limits_{- 5}^0 f\left( x \right) dx, where\ f\left( x \right) = \left| x \right| + \left| x + 2 \right| + \left| x + 5 \right|\]

 

योग

उत्तर

\[I = \int_{- 5}^0 \left\{ \left| x \right| + \left| x + 2 \right| + \left| x + 5 \right| \right\} dx\]
\[ \Rightarrow I = \int_{- 5}^0 \left| x \right| d x + \int_{- 5}^0 \left| x + 2 \right| d x + \int_{- 5}^0 \left| x + 5 \right| d x\]
\[\text{We know that}, \left| x \right| = \begin{cases} - x &,& - 5 \leq x \leq 0\\x&,& x > 0\end{cases}\]
\[\left| x + 2 \right| = \begin{cases} - \left( x + 2 \right) &,& - 5 \leq x \leq - 2\\x + 2&,& - 2 < x \leq 0\end{cases}\]
\[\left| x + 5 \right| = \begin{cases} - \left( x + 5 \right) &,& - 5 \leq x \leq 0\\x + 5&,& x > - 5\end{cases}\]
\[ \therefore I = - \int_{- 5}^0 x d x - \int_{- 5}^{- 2} \left( x + 2 \right) d x + \int_{- 2}^0 \left( x + 2 \right) d x + \int_{- 5}^0 \left( x + 5 \right) d x\]
\[ \Rightarrow I = - \left[ \frac{x^2}{2} \right]_{- 5}^0 - \left[ \frac{x^2}{2} + 2x \right]_{- 5}^{- 2} + \left[ \frac{x^2}{2} + 2x \right]_{- 2}^0 + \left[ \frac{x^2}{2} + 5x \right]_{- 5}^0 \]
\[ \Rightarrow I = \frac{25}{2} - \left( 2 - 4 - \frac{25}{2} + 10 \right) - 2 + 4 + \left( - \frac{25}{2} + 25 \right)\]
\[ \Rightarrow I = \frac{63}{2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.3 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.3 | Q 18 | पृष्ठ ५६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate : `int1/(3+5cosx)dx`


 

Evaluate `∫_0^(3/2)|x cosπx|dx`

 

Evaluate :

`∫_(-pi)^pi (cos ax−sin bx)^2 dx`


Evaluate :

`∫_0^π(4x sin x)/(1+cos^2 x) dx`


Evaluate the integral by using substitution.

`int_(-1)^1 dx/(x^2 + 2x  + 5)`


Evaluate of the following integral: 

\[\int\frac{1}{x^5}dx\]

Evaluate of the following integral: 

\[\int\frac{1}{x^{3/2}}dx\]

Evaluate of the following integral:

\[\int\frac{1}{\sqrt[3]{x^2}}dx\]

Evaluate of the following integral:

\[\int 3^{2 \log_3} {}^x dx\]

Evaluate : 

\[\int\frac{e^{6 \log_e x} - e^{5 \log_e x}}{e^{4 \log_e x} - e^{3 \log_e x}}dx\]

Evaluate:

\[\int\frac{e\log \sqrt{x}}{x}dx\]

Evaluate the following integral:

\[\int\limits_{- 4}^4 \left| x + 2 \right| dx\]

Evaluate the following integral:

\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| x + 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_1^2 \left| x - 3 \right| dx\]

Evaluate the following integral:

\[\int\limits_0^{\pi/2} \left| \cos 2x \right| dx\]

Evaluate the following integral:

\[\int\limits_{- \pi/2}^{\pi/2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} dx\]

 


Evaluate the following integral:

\[\int\limits_1^4 \left\{ \left| x - 1 \right| + \left| x - 2 \right| + \left| x - 4 \right| \right\} dx\]

 


Evaluate each of the following integral:

\[\int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\]

 


Evaluate each of the following integral:

\[\int_{- a}^a \frac{1}{1 + a^x}dx\]`, a > 0`

Evaluate the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} x}dx\]

 


Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{\tan^7 x}{\tan^7 x + \cot^7 x}dx\]

Evaluate the following integral:

\[\int_{- \frac{3\pi}{2}}^{- \frac{\pi}{2}} \left\{ \sin^2 \left( 3\pi + x \right) + \left( \pi + x \right)^3 \right\}dx\]

Evaluate the following integral:

\[\int_0^\pi \left( \frac{x}{1 + \sin^2 x} + \cos^7 x \right)dx\]

Evaluate 

\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]


Evaluate : 

\[\int\limits_0^{3/2} \left| x \sin \pi x \right|dx\]

Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .


Evaluate: `int_  e^x ((2+sin2x))/cos^2 x dx`


`int_0^1 x^2e^x dx` = ______.


Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.


Evaluate: `int x/(x^2 + 1)"d"x`


Evaluate:

`int (1 + cosx)/(sin^2x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×