Advertisements
Advertisements
प्रश्न
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
उत्तर
`int_0^4(|x|+|x-2|+|x-4|)dx`
`I=int_0^4f(x)dx=int_0^2f(x)dx+int_2^4f(x)dx`
`I=int_0^2(x+2-x+4-x)dx+int_2^4(x+x-2+4-x)dx`
`I=int_0^2(x+2-x+4-x)dx+int_2^4(x+x-2+4-x)dx`
`I=int_0^2(6-x)dx+int_2^4(x+2)dx=[6x-x^2/2]_0^2+[x^2/2+2x]_2^4=[12-1]+[8-2+(8-4)]=20`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate :
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate :
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is