Advertisements
Advertisements
प्रश्न
\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.
उत्तर
\[\text{We have}, \]
\[ \int_0^k \frac{1}{2 + 8 x^2} d x = \frac{\pi}{16}\]
\[ \Rightarrow \frac{1}{8} \int_0^k \frac{1}{\frac{1}{4} + x^2} d x = \frac{\pi}{16}\]
\[ \Rightarrow \frac{1}{4} \left[ \tan^{- 1} 2x \right]_0^k = \frac{\pi}{16}\]
\[ \Rightarrow \tan^{- 1} 2k = \frac{\pi}{4}\]
\[ \Rightarrow 2k = \tan\frac{\pi}{4}\]
\[ \Rightarrow 2k = 1\]
\[ \Rightarrow k = \frac{1}{2}\]
APPEARS IN
संबंधित प्रश्न
Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
By using the properties of the definite integral, evaluate the integral:
`int_(pi/2)^(pi/2) sin^7 x dx`
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx` and hence evaluate `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .
The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total revenue R is increasing.
Find `dy/dx, if y = cos^-1 ( sin 5x)`
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?
`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______
`int_2^3 x/(x^2 - 1)` dx = ______
`int_0^{pi/2} xsinx dx` = ______
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______
If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______
`int_-1^1x^2/(1+x^2) dx=` ______.
`int_0^1 "e"^(5logx) "d"x` = ______.
Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`
`int_4^9 1/sqrt(x)dx` = ______.
Let a be a positive real number such that `int_0^ae^(x-[x])dx` = 10e – 9 where [x] is the greatest integer less than or equal to x. Then, a is equal to ______.
Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.
If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.
`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.
`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.
Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.
Evaluate: `int_0^(π/4) log(1 + tanx)dx`.
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following integral:
`int_-9^9 x^3 / (4 - x^2) dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`