Advertisements
Advertisements
प्रश्न
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`
पर्याय
True
False
उत्तर
Let I = `int_"a"^"b" f(x)*dx`
Put x = – 1
∴ dx = – dt
When x = a, t = – a
When x = b, t = – b
∴ I = `int_(-a)^(-b) f(-"t") (-"dt")`
= `int_(-"b")^(-"a") f(- "t")*"dt" ...[because int_"a"^"b" f(x)*dx = -int_"b"^"a" f(x)*dx]`
= `int_(-"b")^(-"a") f(-x)*dx ...[because int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt]`.
APPEARS IN
संबंधित प्रश्न
Prove that:
`{:(int_(-a)^a f(x) dx = 2 int_0^a f(x) dx",", "If" f(x) "is an even function"),( = 0",", "if" f(x) "is an odd function"):}`
Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
Evaluate `int_1^3 log x "d"x`
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Solve the following.
`int_1^3x^2logx dx`