Advertisements
Advertisements
Question
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
Solution
Let I = `int_1^2 dx/(x(1 + logx)^2`
Put 1 + log x = t
∴ `(1)/x*dx` = dt
When x = 1, t = 1 + log 1
= 1 + 0 = 1
When x = 2, t = 1 + log 2
∴ I = `int_1^(1 + log2) "dt"/"t"^2`
= `[- 1/"t"]_1^(1 + log 2)`
= `-(1/(1 + log 2) - 1)`
= `-((1 - 1 - log 2)/(1 + log 2))`
∴ I = `log2/(1 + log2)`.
APPEARS IN
RELATED QUESTIONS
Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`
Choose the correct option from the given alternatives :
If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
State whether the following statement is True or False:
`int_2^3 x/(x^2 + 1) "d"x = 1/2 log 2`
Evaluate:
`int_1^2 1/(x^2 + 6x + 5) dx`
Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2)) "d"x`
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
Prove that `int_0^(2a) f(x)dx = int_0^a[f(x) + f(2a - x)]dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`