मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Evaluate the following definite integral: ∫13logx.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following definite integral:

`int_1^3 logx.dx`

बेरीज

उत्तर

Let I = `int_1^3 logx.dx`

= `int_1^3 logx.1.dx`

= `|logx int1.dx|_1^3 - int_1^3 [d/dx (logx) int1.dx].dx`

= `|logx.x int_1^3 - int_1^3 1/x. x. dx|`

= `|logx. x int_1^3 - int_1^3 1.dx|`

=`[x.log x]_1^3 - [x]_1^3`

= (3 . log 3 − 1 . log 1) − (3 − 1)

= (3 log 3 – 0) – 2

= 3 log 3 – 2

= log 33 – 2

∴ I = log 27 –  2

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Definite Integration - EXERCISE 6.1 [पृष्ठ १४५]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 6 Definite Integration
EXERCISE 6.1 | Q 11. | पृष्ठ १४५

संबंधित प्रश्‍न

 Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`


Evaluate : `int_0^(pi/4) sin^4x*dx`


Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`


Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`


Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`


Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`


Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`


Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`


Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`


Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`


Evaluate the following integrals:

`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`


Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`


Fill in the blank : `int_0^2 e^x*dx` = ________


State whether the following is True or False : `int_(-5)^(5)  x^3/(x^2 + 7)*dx` = 0


State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`


Solve the following : `int_4^9 (1)/sqrt(x)*dx`


Solve the following : `int_2^4 x/(x^2 + 1)*dx`


`int_0^1 sqrt((1 - x)/(1 +  x))  "d"x` =


Choose the correct alternative:

`int_2^3 x/(x^2 - 1)  "d"x` =


Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x))  "d"x`


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x + 5)dx`


Evaluate:

`int_0^1 |x| dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite intergral:

`int _1^3logxdx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Evaluate the following definite intergral.

`int_1^2 (3x)/((9x^2 - 1))dx`


Solve the following.

`int_1^3x^2 logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×