Advertisements
Advertisements
प्रश्न
Evaluate the following definite integral:
`int_1^3 logx.dx`
उत्तर
Let I = `int_1^3 logx.dx`
= `int_1^3 logx.1.dx`
= `|logx int1.dx|_1^3 - int_1^3 [d/dx (logx) int1.dx].dx`
= `|logx.x int_1^3 - int_1^3 1/x. x. dx|`
= `|logx. x int_1^3 - int_1^3 1.dx|`
=`[x.log x]_1^3 - [x]_1^3`
= (3 . log 3 − 1 . log 1) − (3 − 1)
= (3 log 3 – 0) – 2
= 3 log 3 – 2
= log 33 – 2
∴ I = log 27 – 2
APPEARS IN
संबंधित प्रश्न
Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`
Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`
Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`
Fill in the blank : `int_0^2 e^x*dx` = ________
State whether the following is True or False : `int_(-5)^(5) x^3/(x^2 + 7)*dx` = 0
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following : `int_4^9 (1)/sqrt(x)*dx`
Solve the following : `int_2^4 x/(x^2 + 1)*dx`
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
Evaluate:
`int_0^1 |x| dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite intergral:
`int _1^3logxdx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite intergral.
`int_1^2 (3x)/((9x^2 - 1))dx`
Solve the following.
`int_1^3x^2 logx dx`