Advertisements
Advertisements
प्रश्न
If `int_0^"a" (2x + 1) "d"x` = 2, find a
उत्तर
Given, `int_0^"a" (2x + 1) "d"x` = 2
∴ `[(2x^2)/2 + x]_0^"a"` = 2
∴ `[x^2 + x]_0^"a"` = 2
∴ [(a2 + a) – (0)] = 2
∴ a2 + a = 2
∴ a2 + a – 2 = 0
∴ a2 + 2a – a – 2 = 0
∴ a(a + 2) – 1(a + 2) = 0
∴ (a + 2)(a – 1) = 0
∴ a + 2 = 0 or a – 1 = 0
∴ a = – 2 or a = 1
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int_0^(pi/2) sqrt(cos x) sin^3x * dx`
Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`
Evaluate the following definite integral:
`int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`
Fill in the blank : `int_2^3 x^4*dx` = _______
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
Evaluate the following integrals:
`int_-9^9 (x^3)/(4 - x^2) dx`
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = ______.
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Solve the following:
`int_1^3 x^2 log x dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) · dx`