Advertisements
Advertisements
प्रश्न
Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`
उत्तर
Let I = `int_0^9 (1)/(1 + sqrt(x))*dx`
Put `1 + sqrt(x)` = t
∴ x = (t – 1)2
∴ dx = 2(t – 1)dt
When x = 0, t = 1 + 0 = 1
When x = 9, t = `1 + sqrt(9)`
= 1 + 3 = 4
∴ I = `int_1^4 (2(t - 1))/"t"*"dt"`
= `2int_1^4(1 - 1/"t")*"dt"`
= `2]"t" - log|"t"|]_1^4`
= 2 [(4 – log |4|) – (1 – log |1|)]
= 2 [4 – log 4 – (1 – 0)]
= 2 [4 – log 22 – 1)
= 2 (3 – 2log 2)
∴ I = 6 – 4 log 2.
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
Evaluate the following : `int_0^pi (sin^-1x + cos^-1x)^3 sin^3x*dx`
Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`
Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`
Fill in the blank : `int_2^3 x^4*dx` = _______
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2)) "d"x`
Evaluate the following definite intergral:
`int_1^3 log xdx`
Evaluate the following integral:
`int_0^1 x(1-x)^5dx`
Solve the following.
`int_1^3 x^2 log x dx `
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Solve the following:
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`