Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_0^pi x sin x cos^2x*dx`
उत्तर
Let I = `int_0^pi x sin x cos^2x*dx`
= `(1)/(2) int_0^a x(2 sin x cos x)cos x*dx`
= `(1)/(2) int_0^pi x(sin 2x cos x)*dx`
= `(1)/(4) int_0^pi x (2 sin 2x cos x)*dx`
= `(1)/(4) int_0^pi [sin(2x + x) + sin(2x - x)]*dx`
= `(1)/(4)[int_0^pi x sin 3x*dx + int_0^pi x sin x*dx]`
= `(1)/(4)["I"_1 + "I"_2]` ...(1)
I1 = `int_0^pi x sin 3x*dx`
= `[x int sin 3x*dx]_0^pi - int[{d/dx (x) int sin 3x*dx}]*dx`
= `[x((- cos3x)/3)]_0^pi - int_0^pi 1((- cos 3x)/3)*dx`
= `[- (pi cos 3pi)/3 + 0] + (1)/(3) int_0^pi cos 3x*dx`
= `- pi/(3)(- 1) + 1/3 [(sin3x)/3]_0^pi`
= `pi/(3) + (1)/(3)[0 - 0]`
= `pi/(3)` ...(2)
I2 = `int_0^pi x sinx*dx`
= `[x int sinx*dx]_0^pi - int_0^pi[{d/dx (x) int sinx*dx}]*dx`
= `[x(- cos x)]_0^pi - int_0^pi 1*(- cos x)*dx`
= `[ - pi cospi + 0] + int_0^pi cosx*dx`
= `-pi(-1) + [sin x]_0^pi`
= `pi + [sin pi - sin 0]`
= `pi + (0 - 0)`
= π ...(3)
From (1), (2) and (3), we get
I = `(1)/(4)[pi/3 + pi]`
= `(1)/(4)((4pi)/3)`
= `pi/(3)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following definite integral:
`int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Fill in the blank : `int_0^2 e^x*dx` = ________
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
Solve the following : `int_2^3 x/(x^2 + 1)*dx`
Solve the following : `int_1^2 x^2*dx`
Solve the following : `int_2^4 x/(x^2 + 1)*dx`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5dx`
Evaluate the following definite intergral:
`int _1^3logxdx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) · dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`
Solve the following.
`int_1^3 x^2 logxdx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`