Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
उत्तर
Let I = `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
= `int_((-pi)/4)^(pi/4) [x/(2 - cos2x) + (pi/4)/(2 - cos 2x)]`
= `int_((-pi)/4)^(pi/4) x/(2 - cos2x)*dx + pi/(4) int_((-pi)/4)^(pi/4) 1/(2 - cos2x)*dx`
= `"I"_1 + pi/(4)"I"_2` ...(1)
Let f(x) = `x/(2 - cos2x)`
∴ f(– x) = `(-x)/(2 - cos[2(-x)]`
= `(-x)/(2 - cos 2x)`
= – f(x)
∴ f is an odd function
∴ `int_((-pi)/4)^(pi/4) f(x)*dx` = 0
i.e. `int_((-pi)/4)^(pi/4) x/(2 - cos 2x)*dx` = 0, i.e. I1 = 0 ...(2)
In I2, put tan x = t
∴ x = tan–1t
∴ dx = `(1)/(1 + t^2)*dt`
and
cos 2x = `(1 - t^2)/(1 + t^2)`
When x = `- pi/(4), t = tan(- pi/4)` = – 1
When x = `pi/(4), t = tan pi/(4)` = 1.
∴ I2 = `int_(-1)^(1) (1)/(2 - ((1 - t^2)/(1 + t^2)))*(1)/(1 + t^2)*dt`
= `int_(-1)^(1) (1)/(2(1 + t^2) - (1 - t^2))*dt`
= `int_(-1)^(1) (1)/(3t^2 + 1)*dt`
= `int_(-1)^(1) (1)/((sqrt(3) t)^2 + 1)`
= `[1/sqrt(3) tan^-1 ((sqrt(3)t)/1)]_(-1)^(1)`
= `(1)/sqrt(3)[tan^-1 sqrt(3) - tan^-1 (- sqrt(3))]`
= `(1)/sqrt(3)[tan^-1 sqrt(3) + tan^-1 sqrt(3)]`
= `(1)/sqrt(3)[pi/3 + pi/3]`
= `(2pi)/(3sqrt(3)` ...(3)
From (1), (2) and (3), we get
I = `0 + pi/(4)[(2pi)/(3sqrt(3))]`
= `pi^2/(6sqrt(3)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`
Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`
State whether the following is True or False : `int_(-5)^(5) x^3/(x^2 + 7)*dx` = 0
Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following definite intergral:
`int_1^3 log xdx`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
`int_a^b f(x) dx = int_a^b f (t) dt`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Solve the following:
`int_1^3 x^2 log x dx`
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`