हिंदी

Evaluate the following : ∫-π4π4x+π42-cos2x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following :  `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`

योग

उत्तर

Let I = `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`

= `int_((-pi)/4)^(pi/4) [x/(2 - cos2x) + (pi/4)/(2 - cos 2x)]`

= `int_((-pi)/4)^(pi/4) x/(2 - cos2x)*dx + pi/(4) int_((-pi)/4)^(pi/4) 1/(2 - cos2x)*dx`

= `"I"_1 + pi/(4)"I"_2`                                       ...(1)

Let f(x) = `x/(2 - cos2x)`

∴ f(– x) = `(-x)/(2 - cos[2(-x)]`

= `(-x)/(2 - cos 2x)`

= – f(x)

∴ f is an odd function

∴ `int_((-pi)/4)^(pi/4) f(x)*dx` = 0

i.e. `int_((-pi)/4)^(pi/4) x/(2 - cos 2x)*dx` = 0, i.e. I1 = 0     ...(2)

In I2, put tan x = t

∴  x = tan–1t

∴ dx = `(1)/(1 + t^2)*dt`
and
cos 2x = `(1 - t^2)/(1 + t^2)`

When x = `- pi/(4), t = tan(- pi/4)` = – 1

When x = `pi/(4), t = tan pi/(4)` = 1.

∴ I2 = `int_(-1)^(1) (1)/(2 - ((1 - t^2)/(1 + t^2)))*(1)/(1 + t^2)*dt`

= `int_(-1)^(1) (1)/(2(1 + t^2) - (1 - t^2))*dt`

= `int_(-1)^(1) (1)/(3t^2 + 1)*dt`

= `int_(-1)^(1) (1)/((sqrt(3) t)^2 + 1)`

= `[1/sqrt(3) tan^-1 ((sqrt(3)t)/1)]_(-1)^(1)`

= `(1)/sqrt(3)[tan^-1 sqrt(3) - tan^-1 (- sqrt(3))]`

= `(1)/sqrt(3)[tan^-1 sqrt(3) + tan^-1 sqrt(3)]`

= `(1)/sqrt(3)[pi/3 + pi/3]`

= `(2pi)/(3sqrt(3)`                                              ...(3)
From (1), (2) and (3), we get

I = `0 + pi/(4)[(2pi)/(3sqrt(3))]`

= `pi^2/(6sqrt(3)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Definite Integration - Exercise 4.2 [पृष्ठ १७२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Definite Integration
Exercise 4.2 | Q 3.08 | पृष्ठ १७२

संबंधित प्रश्न

Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`


Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`


Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`


Evaluate the following:

`int_0^(pi/2) log(tanx)dx`


Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`


Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`


`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.


Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos  theta/2 + sin  theta/2]^3*d theta`


Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`


Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`


Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k


Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`


Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`


Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.


Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`


Choose the correct alternative :

`int_2^3 x/(x^2 - 1)*dx` =


Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`


State whether the following is True or False : `int_(-5)^(5)  x^3/(x^2 + 7)*dx` = 0


Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`


Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`


Solve the following : `int_1^2 dx/(x(1 + logx)^2`


Choose the correct alternative:

`int_(-2)^3 1/(x + 5)  "d"x` =


If `int_1^"a" (3x^2 + 2x + 1)  "d"x` = 11, find the real value of a


Evaluate the following definite integrals:

`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`


Evaluate the following definite integral:

`int_1^3 log x  dx`


Evaluate the following definite intergral:

`int_1^3 log xdx`


Evaluate the following definite intergral:

`int_-2^3 1/(x + 5)dx`


`int_a^b f(x) dx = int_a^b f (t) dt`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Solve the following:

`int_1^3 x^2 log x dx`


Solve the following.

`int_0 ^1 e^(x^2) * x^3`dx


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Solve the following.

`int_0^1e^(x^2) x^3 dx`


Evaluate the following definite intergral:

`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)dx`


Evaluate the following definite intergral:

`int_(-2)^3 1/(x + 5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×