Advertisements
Advertisements
प्रश्न
Choose the correct alternative :
If `int_0^"a" 3x^2*dx` = 8, then a = ?
विकल्प
2
0
`(8)/(3)`
a
उत्तर
`int_0^"a" 3x^2*dx` = 8
∴ `3[x^3/3]_0^"a"` = 8
∴ a3 = 23
∴ a = 2.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
Choose the correct alternative :
`int_0^2 e^x*dx` =
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
Solve the following : `int_(-4)^(-1) (1)/x*dx`
Choose the correct alternative:
`int_0^"a" 3x^5 "d"x` = 8, then a =
If `int_0^"a" (2x + 1) "d"x` = 2, find a
`int_0^1 1/(2x + 5)dx` = ______
Solve the following.
`int_1^3 x^2 log x dx `
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite intergral.
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`