Advertisements
Advertisements
प्रश्न
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
विकल्प
`-log(8/3)`
`log(8/3)`
`log(3/8)`
`-log(3/8)`
उत्तर
Let I = `int_(-2)^3 (1)/(x + 5)*dx`
= `[log |x + 5|]_(-2)^3`
= [log |3 + 5| – log |–2 + 5|]
= log 8 – log 3
∴ I = `log(8/3)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Choose the correct alternative :
`int_0^2 e^x*dx` =
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following:
`int_1^3 x^2 log x*dx`
Solve the following : `int_4^9 (1)/sqrt(x)*dx`
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Solution: Let I = `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`
∴ x + 3 = A(x + 2) + B.x
∴ A = `square`, B = `square`
∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`
∴ I = `[square log x + square log(x + 2)]_1^2`
∴ I = `square`
Solve the following `int_1^3 x^2log x dx`
`int_0^1 1/(2x + 5)dx` = ______
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`