English

∫ 0 √ X ( 1 − X ) D X Equals(A) π/2 (B) π/4 (C) π/6 (D) π/8 - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

Options

  • π/2

  • π/4

  • π/6

  • π/8

MCQ

Solution

 

\[\pi\]\8

 

\[Let, I = \int_0^1 \sqrt{x\left( 1 - x \right)} d x\]
\[ = \int_0^1 \sqrt{x - x^2} d x\]
\[ = \int_0^1 \sqrt{\frac{1}{4} - \left( x^2 - x + \frac{1}{4} \right)} d x\]
\[ = \int_0^1 \sqrt{\left( \frac{1}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2} dx\]
\[ = \left[ \frac{\left( x - \frac{1}{2} \right)}{2}\sqrt{x - x^2} + \frac{1}{2} \times \frac{1}{4} \sin^{- 1} \left( 2x - 1 \right) \right]_0^1 \]
\[ = \frac{1}{8} \left[ \sin^{- 1} \left( 1 \right) - \sin^{- 1} \left( - 1 \right) \right]_0^1 \]
\[ = \frac{1}{8}\left[ \frac{\pi}{2} + \frac{\pi}{2} \right]\]
\[ = \frac{\pi}{8}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - MCQ [Page 117]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
MCQ | Q 1 | Page 117

RELATED QUESTIONS

\[\int\limits_{- 2}^3 \frac{1}{x + 7} dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_1^e \frac{\log x}{x} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int\limits_0^\pi 5 \left( 5 - 4 \cos \theta \right)^{1/4} \sin \theta\ d \theta\]

\[\int\limits_0^{\pi/2} \cos^5 x\ dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

\[\int\limits_0^2 x\sqrt{2 - x} dx\]

\[\int\limits_1^3 \left( 3x - 2 \right) dx\]

\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

\[\int\limits_a^b e^x dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_{- 2}^1 \frac{\left| x \right|}{x} dx .\]

\[\int\limits_0^4 \frac{1}{\sqrt{16 - x^2}} dx .\]

\[\int\limits_0^3 \frac{1}{x^2 + 9} dx .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \tan\ xdx\]

 


\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals


The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals


\[\int\limits_0^{\pi/2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} dx\] equals

\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals

 


If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\]  then the value of I10 + 90I8 is

 


\[\int\limits_0^1 \frac{d}{dx}\left\{ \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \right\} dx\] is equal to

\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]


\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]


\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]


Evaluate the following:

f(x) = `{{:("c"x",", 0 < x < 1),(0",",  "otherwise"):}` Find 'c" if `int_0^1 "f"(x)  "d"x` = 2


Evaluate the following:

`int_0^oo "e"^(-mx) x^6 "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Find `int sqrt(10 - 4x + 4x^2)  "d"x`


Verify the following:

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


`int x^9/(4x^2 + 1)^6  "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×