Advertisements
Advertisements
Question
Options
π/2
π/4
π/6
π/8
Solution
\[\pi\]\8
\[Let, I = \int_0^1 \sqrt{x\left( 1 - x \right)} d x\]
\[ = \int_0^1 \sqrt{x - x^2} d x\]
\[ = \int_0^1 \sqrt{\frac{1}{4} - \left( x^2 - x + \frac{1}{4} \right)} d x\]
\[ = \int_0^1 \sqrt{\left( \frac{1}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2} dx\]
\[ = \left[ \frac{\left( x - \frac{1}{2} \right)}{2}\sqrt{x - x^2} + \frac{1}{2} \times \frac{1}{4} \sin^{- 1} \left( 2x - 1 \right) \right]_0^1 \]
\[ = \frac{1}{8} \left[ \sin^{- 1} \left( 1 \right) - \sin^{- 1} \left( - 1 \right) \right]_0^1 \]
\[ = \frac{1}{8}\left[ \frac{\pi}{2} + \frac{\pi}{2} \right]\]
\[ = \frac{\pi}{8}\]
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Find `int sqrt(10 - 4x + 4x^2) "d"x`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.