मराठी

Π ∫ 0 X Log Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^\pi x \log \sin x\ dx\]

उत्तर

\[\int_0^\pi x \log \sin x\ d x\]
\[Let I = \int_0^\pi x \log\left( \sin x \right) d\ x . . . . . (i)\]
\[ I = \int_0^\pi \left( \pi - x \right) \log \sin\left( \pi - x \right) d x\]
\[ I = \int_0^\pi \left( \pi - x \right) \log\left( \sin x \right) dx . . . . . (ii)\]
\[\text{Adding (i) and (ii)}\]
\[2I = \pi \int_0^\pi \log \sin x\ d x\]
\[ = 2\pi \int_0^\frac{\pi}{2} \log \sin x\ d x\]
\[ I = \pi \int_0^\frac{\pi}{2} \log \sin x\ d x . . . . . (iii)\]
\[Let\ \int_0^\frac{\pi}{2} \log \sin x dx = I_2 \]
\[ I_2 = \int_0^\frac{\pi}{2} \log \sin\left( \frac{\pi}{2} - x \right) dx\]
\[ = \int_0^\frac{\pi}{2} \log \cos x dx\]
\[2 I_2 = \int_0^\frac{\pi}{2} \left( \log \sin x + \log \cos x \right) dx\]
\[ = \int_0^\frac{\pi}{2} \log\left( \sin x \cos x \right) dx\]
\[ = \int_0^\frac{\pi}{2} \log\left( \sin2x \right) dx - \int_0^\frac{\pi}{2} \log 2 dx\]
\[Let\ 2x = t\]
\[2dx = dt\]
\[when, \]
\[x = 0 \Rightarrow t = 0\]
\[x = 0 \Rightarrow t = \pi\]
\[2 I_2 = \frac{1}{2} \int_0^\pi \log \left( \sin t \right) dt - \frac{\pi}{2}\log 2\]
\[2 I_2 = \frac{2}{2} \int_0^\frac{\pi}{2} \log \left( \sin t \right) dt - \frac{\pi}{2}\log 2\]
\[2 I_2 = I_2 - \frac{\pi}{2}\log 2\]
\[ I_2 = - \frac{\pi}{2}\log 2\]
\[From \left( iii \right), \]
\[ I = \pi \int_0^\frac{\pi}{2} \log\ sinx\ dx = \pi I_2 \]
\[I = \pi\left( - \frac{\pi}{2}\log 2 \right)\]
\[I = \frac{- \pi^2 \log 2}{2}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.5 | Q 14 | पृष्ठ ९५

संबंधित प्रश्‍न

\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]

\[\int\limits_0^{\pi/2} x^2 \cos^2 x\ dx\]

\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

\[\int\limits_{\pi/2}^\pi e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int_0^1 x\log\left( 1 + 2x \right)dx\]

\[\int_0^\frac{\pi}{4} \left( a^2 \cos^2 x + b^2 \sin^2 x \right)dx\]

\[\int\limits_0^\pi \frac{1}{3 + 2 \sin x + \cos x} dx\]

\[\int\limits_0^{\pi/2} x^2 \sin\ x\ dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{- \frac{\pi}{2}}{\sqrt{\cos x \sin^2 x}}dx\]

\[\int\limits_0^2 x\sqrt{2 - x} dx\]

\[\int_0^1 | x\sin \pi x | dx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]


If f is an integrable function, show that

\[\int\limits_{- a}^a x f\left( x^2 \right) dx = 0\]

 


\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_3^5 \left( 2 - x \right) dx\]

\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]

\[\int\limits_a^b e^x dx\]

\[\int\limits_0^2 \left( x^2 - x \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]

 


\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^{15} \left[ x \right] dx .\]

Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .


Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .


\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]


\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]


\[\int\limits_{- 1}^1 e^{2x} dx\]


Find : `∫_a^b logx/x` dx


Using second fundamental theorem, evaluate the following:

`int_1^"e" ("d"x)/(x(1 + logx)^3`


Evaluate the following:

`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`


Evaluate the following integrals as the limit of the sum:

`int_1^3 x  "d"x`


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


Choose the correct alternative:

If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x)  "d"x + int_"c"^"b" f(x)  "d"x` is


Choose the correct alternative:

Γ(1) is


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1


Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×