English

By using the properties of the definite integral, evaluate the integral: ∫-π2π2sin2x dx - Mathematics

Advertisements
Advertisements

Question

By using the properties of the definite integral, evaluate the integral:

`int_((-pi)/2)^(pi/2) sin^2 x  dx`

Sum

Solution

Let`I = int_(-pi//2)^(pi//2)  sin^2 x  dx`

`= 2 int_0^(pi//2)  sin^2 x  dx`   ...(i)   ...(∵ sin2 x is a function)

Then `I = 2 int_0^(pi//2)  sin^2  (pi/2 - x)  dx`

`= int_0^(pi//2) cos^2 x  dx`  ...(ii)    `[because int_0^a f(x) = int_0^a  f(a - x)  dx]`

On adding equations (i) and (ii)

`2I = 2 int_0^(pi//2) (sin^2  x + cos^2   x)  dx`

`2I = 2 int_0^(pi//2)  1 dx`

`=> 2I = 2 [x]_0^(pi//2)`

`=> 2I = 2 xx pi/2`

Hence, `I = pi/2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.11 [Page 347]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.11 | Q 11 | Page 347

RELATED QUESTIONS

 
 

Evaluate `int_(-2)^2x^2/(1+5^x)dx`

 
 

Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`


By using the properties of the definite integral, evaluate the integral:

`int_(-5)^5 | x + 2| dx`


By using the properties of the definite integral, evaluate the integral:

`int_2^8 |x - 5| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^a  sqrtx/(sqrtx + sqrt(a-x))   dx`


Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`


Evaluate`int (1)/(x(3+log x))dx` 


Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   


Find `dy/dx, if y = cos^-1 ( sin 5x)`


Evaluate :  ∫ log (1 + x2) dx


Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`


`int_2^4 x/(x^2 + 1)  "d"x` = ______


State whether the following statement is True or False:

`int_(-5)^5 x/(x^2 + 7)  "d"x` = 10


The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_{pi/6}^{pi/3} sin^2x dx` = ______ 


`int_(pi/4)^(pi/2) sqrt(1-sin 2x)  dx =` ______.


`int_-1^1x^2/(1+x^2)  dx=` ______.


`int_0^9 1/(1 + sqrtx)` dx = ______ 


`int_0^1 "e"^(5logx) "d"x` = ______.


Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`


`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.


`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.


If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.


Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.


`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals ______.


If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is ______.


Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.

Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.


Evaluate: `int_0^π x/(1 + sinx)dx`.


Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.


Evaluate: `int_0^(π/4) log(1 + tanx)dx`.


Solve the following.

`int_1^3 x^2 logx  dx`


 `int_-9^9 x^3/(4-x^2) dx` =______


Evaluate: `int_-1^1 x^17.cos^4x  dx`


Solve the following.

`int_2^3x/((x+2)(x+3))dx`


Evaluate the following integral:

`int_0^1 x (1 - x)^5 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×