English

By using the properties of the definite integral, evaluate the integral: ∫0π2(2logsinx-logsin2x)dx - Mathematics

Advertisements
Advertisements

Question

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (2log sin x - log sin 2x)dx`

Sum

Solution

Let `I = int_0^(pi/2) (2 log sin x - log sin 2x) dx`

`= int_0^(pi/2) [2 log sin x - log (2 sin x cos x)] dx`

`= int_0^(pi/2) [2 log sinx  - log 2 - log sin x -  log cos x] dx`

`= int_0^(pi/2) [log sin x -  log 2 - log cos x] dx`

`= int_0^(pi/2) log sin x dx - int_0^(pi/2) log 2 dx - int_0^(pi/2) log cos x dx`

`= int_0^(pi/2) log sin x dx - int_0^(pi/2) log 2 dx - int_0^(pi/2) log cos (pi/2 - x)  dx`       `....[∵ int_0^a f (x) dx = int_0^a  f (a - x) dx]`

`= int_0^(pi/2) log sinx dx - (log 2) [x]_0^(pi/2) - int_0^(pi/2) log sin x dx`

`= - (log 2) (pi/2 - 0)`

`= pi/2 log2`

`= pi/2 log (2)^-1`

`= pi/2 log (1/2)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.11 [Page 347]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.11 | Q 10 | Page 347

RELATED QUESTIONS

Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`


If `int_0^alpha3x^2dx=8` then the value of α is :

(a) 0

(b) -2

(c) 2 

(d) ±2


Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`


By using the properties of the definite integral, evaluate the integral:

`int_2^8 |x - 5| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`


Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`


\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.


If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

Evaluate :  ∫ log (1 + x2) dx


Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.


Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`


`int_0^1 "e"^(2x) "d"x` = ______


By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`.

Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`     ......(i)

Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`, we get

I = `int_2^5 ("(  )")/(sqrt(7 - x) + "(  )")  "d"x`   ......(ii)

Adding equations (i) and (ii), we get

2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x))  "d"x + (   )  "d"x`

2I = `int_2^5 (("(    )" + "(     )")/("(    )" + "(     )"))  "d"x`

2I = `square`

∴ I =  `square`


`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______


`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?


If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.


`int_0^pi sin^2x.cos^2x  dx` = ______ 


`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`


`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.


`int_0^pi x*sin x*cos^4x  "d"x` = ______.


`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.


Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`


`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.


Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`


Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`


`int_a^b f(x)dx` = ______.


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.


What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?


The value of `int_0^(π/4) (sin 2x)dx` is ______.


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 dx`


Solve the following.

`int_2^3x/((x+2)(x+3))dx`


Solve.

`int_0^1e^(x^2)x^3dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Evaluate the following definite intergral:

`int_1^3logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×