Advertisements
Advertisements
Question
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
Solution
Let `I = int_0^(pi/2) (2 log sin x - log sin 2x) dx`
`= int_0^(pi/2) [2 log sin x - log (2 sin x cos x)] dx`
`= int_0^(pi/2) [2 log sinx - log 2 - log sin x - log cos x] dx`
`= int_0^(pi/2) [log sin x - log 2 - log cos x] dx`
`= int_0^(pi/2) log sin x dx - int_0^(pi/2) log 2 dx - int_0^(pi/2) log cos x dx`
`= int_0^(pi/2) log sin x dx - int_0^(pi/2) log 2 dx - int_0^(pi/2) log cos (pi/2 - x) dx` `....[∵ int_0^a f (x) dx = int_0^a f (a - x) dx]`
`= int_0^(pi/2) log sinx dx - (log 2) [x]_0^(pi/2) - int_0^(pi/2) log sin x dx`
`= - (log 2) (pi/2 - 0)`
`= pi/2 log2`
`= pi/2 log (2)^-1`
`= pi/2 log (1/2)`
APPEARS IN
RELATED QUESTIONS
Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`
If `int_0^alpha3x^2dx=8` then the value of α is :
(a) 0
(b) -2
(c) 2
(d) ±2
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
By using the properties of the definite integral, evaluate the integral:
`int_2^8 |x - 5| dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`
\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
Evaluate : ∫ log (1 + x2) dx
Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.
Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`
`int_0^1 "e"^(2x) "d"x` = ______
By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x`.
Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x` ......(i)
Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`, we get
I = `int_2^5 ("( )")/(sqrt(7 - x) + "( )") "d"x` ......(ii)
Adding equations (i) and (ii), we get
2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x)) "d"x + ( ) "d"x`
2I = `int_2^5 (("( )" + "( )")/("( )" + "( )")) "d"x`
2I = `square`
∴ I = `square`
`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______
`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?
If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.
`int_0^pi sin^2x.cos^2x dx` = ______
`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`
`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.
`int_0^pi x*sin x*cos^4x "d"x` = ______.
`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.
Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`
Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
`int_a^b f(x)dx` = ______.
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.
What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?
The value of `int_0^(π/4) (sin 2x)dx` is ______.
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Solve the following.
`int_2^3x/((x+2)(x+3))dx`
Solve.
`int_0^1e^(x^2)x^3dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following definite intergral:
`int_1^3logx dx`