Advertisements
Advertisements
Question
Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
Solution
We have, `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
Let f(x) = sin|x| + cos|x|
Then, f(x) = f(–x)
Since, f(x) is an even function
So, I = `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
= `2int_0^(π/2) (sinx + cosx)dx`
= `2[-cosx + sinx]_0^(π/2)`
= `2[-cos π/2 + sin π/2 + cos0 - sin0]`
= 2[0 + 1 + 1 – 0]
= 2(2)
= 4
APPEARS IN
RELATED QUESTIONS
Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_((-pi)/2)^(pi/2) sin^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`
Evaluate : `int "e"^(3"x")/("e"^(3"x") + 1)` dx
Evaluate `int_1^3 x^2*log x "d"x`
`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______
Which of the following is true?
`int_0^1 "e"^(5logx) "d"x` = ______.
Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.
`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:
`int (dx)/(e^x + e^(-x))` is equal to ______.
Let a be a positive real number such that `int_0^ae^(x-[x])dx` = 10e – 9 where [x] is the greatest integer less than or equal to x. Then, a is equal to ______.
If f(x) = `(2 - xcosx)/(2 + xcosx)` and g(x) = logex, (x > 0) then the value of the integral `int_((-π)/4)^(π/4) "g"("f"(x))"d"x` is ______.
The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.
What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?
`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec" x))))dx` is equal to ______.
`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.
Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.
Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.
Evaluate the following limit :
`lim_("x"->3)[sqrt("x"+6)/"x"]`
`int_0^(2a)f(x)/(f(x)+f(2a-x)) dx` = ______
Evaluate the following integral:
`int_0^1x (1 - x)^5 dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`