English

Evaluate: ππ∫-π2π2(sin|x|+cos|x|)dx - Mathematics

Advertisements
Advertisements

Question

Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`

Sum

Solution

We have, `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`

Let f(x) = sin|x| + cos|x|

Then, f(x) = f(–x)

Since, f(x) is an even function

So, I = `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`

= `2int_0^(π/2) (sinx + cosx)dx`

= `2[-cosx + sinx]_0^(π/2)`

= `2[-cos  π/2 + sin  π/2 + cos0 - sin0]`

= 2[0 + 1 + 1 – 0]

= 2(2)

= 4

shaalaa.com
  Is there an error in this question or solution?
2021-2022 (April) Term 2 - Outside Delhi Set 3

RELATED QUESTIONS

Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_((-pi)/2)^(pi/2) sin^2 x  dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^a  sqrtx/(sqrtx + sqrt(a-x))   dx`


Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`


Evaluate : `int  "e"^(3"x")/("e"^(3"x") + 1)` dx


Evaluate `int_1^3 x^2*log x  "d"x`


`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______


Which of the following is true?


`int_0^1 "e"^(5logx) "d"x` = ______.


Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`


`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.


`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.


`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:


`int (dx)/(e^x + e^(-x))` is equal to ______.


Let a be a positive real number such that `int_0^ae^(x-[x])dx` = 10e – 9 where [x] is the greatest integer less than or equal to x. Then, a is equal to ______.


If f(x) = `(2 - xcosx)/(2 + xcosx)` and g(x) = logex, (x > 0) then the value of the integral `int_((-π)/4)^(π/4) "g"("f"(x))"d"x` is ______.


The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.


What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?


`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec"  x))))dx` is equal to ______.


`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.


Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.

Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.


Evaluate the following limit :

`lim_("x"->3)[sqrt("x"+6)/"x"]`


`int_0^(2a)f(x)/(f(x)+f(2a-x))  dx` = ______


Evaluate the following integral:

`int_0^1x (1 - x)^5 dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×