English

Afxdxafxdxafkxdx∫02af(x)dx=∫0af(x)dx+∫0af(k-x)dx, then the value of k is: - Mathematics

Advertisements
Advertisements

Question

`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:

Options

  • a

  • 2a

  • Independent of a

  • None of the above options

MCQ

Solution

2a

Explanation:

Given, `int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"` ...........(i)

We know, from properties of integrals

`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"(2"a" - "x") "dx"` ..........(ii)

From equations (i) and (ii), we get

k = 2a

shaalaa.com
  Is there an error in this question or solution?
2021-2022 (April) Set 1

RELATED QUESTIONS

Evaluate : `intsec^nxtanxdx`


 
 

Evaluate `int_(-2)^2x^2/(1+5^x)dx`

 
 

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/4) log (1+ tan x) dx`


`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.


Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`


Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .


Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`


Evaluate `int_0^1 x(1 - x)^5  "d"x`


`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.


If `int_0^"a" sqrt("a - x"/x) "dx" = "K"/2`, then K = ______.


If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______


The value of `int_1^3 dx/(x(1 + x^2))` is ______ 


Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`


Evaluate `int_(-1)^2 "f"(x)  "d"x`, where f(x) = |x + 1| + |x| + |x – 1|


`int_(-2)^2 |x cos pix| "d"x` is equal to ______.


Evaluate the following:

`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`


Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`


Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`


`int_0^1 1/(2x + 5) dx` = ______.


If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.


If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.


The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.


`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals ______.


Evaluate: `int_0^π x/(1 + sinx)dx`.


Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.


Evaluate: `int_0^(π/4) log(1 + tanx)dx`.


Evaluate the following integral:

`int_0^1 x(1 - 5)^5`dx


Evaluate the following integral:

`int_0^1x (1 - x)^5 dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2)dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×