Advertisements
Advertisements
Question
The value of `int_0^(π/4) (sin 2x)dx` is ______.
Options
0
1
`1/2`
`-1/2`
Solution
The value of `int_0^(π/4) (sin 2x)dx` is `underlinebb(1/2)`.
Explanation:
`int_0^(π/4) (sin 2x)dx`
Let u = 2x
If x = 0 then, u = 0
and x = `π/4` then u = `π/2`.
`\implies` du = 2 dx
`1/2 int_0^(π/2) sin u du = -1/2 [cos u]_0^(π/2)`
= `-1/2 [0 - 1]`
= `1/2`
APPEARS IN
RELATED QUESTIONS
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_2^8 |x - 5| dx`
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
Evaluate : `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`
Evaluate : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`
Evaluate = `int (tan x)/(sec x + tan x)` . dx
Using properties of definite integrals, evaluate
`int_0^(π/2) sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`
State whether the following statement is True or False:
`int_(-5)^5 x/(x^2 + 7) "d"x` = 10
`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?
`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`
The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______
`int_0^pi x sin^2x dx` = ______
`int_0^1 "e"^(5logx) "d"x` = ______.
Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
`int_(-2)^2 |x cos pix| "d"x` is equal to ______.
If `f(a + b - x) = f(x)`, then `int_0^b x f(x) dx` is equal to
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.
The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
If `int_0^(π/2) log cos x dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.
Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.
`int_0^(2a)f(x)/(f(x)+f(2a-x)) dx` = ______
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following integral:
`int_0^1x (1 - x)^5 dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following definite intergral:
`int_1^3logx dx`