English

The value of π∫0π4(sin2x)dx is ______. - Mathematics

Advertisements
Advertisements

Question

The value of `int_0^(π/4) (sin 2x)dx` is ______.

Options

  • 0

  • 1

  • `1/2`

  • `-1/2`

MCQ
Fill in the Blanks

Solution

The value of `int_0^(π/4) (sin 2x)dx` is `underlinebb(1/2)`.

Explanation:

`int_0^(π/4) (sin 2x)dx`

Let u = 2x

If x = 0 then, u = 0

and x = `π/4` then u = `π/2`.

`\implies` du = 2 dx

`1/2 int_0^(π/2) sin u  du = -1/2 [cos u]_0^(π/2)`

= `-1/2 [0 - 1]`

= `1/2`

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Delhi Set 2

RELATED QUESTIONS

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) cos^2 x dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx` 


By using the properties of the definite integral, evaluate the integral:

`int_2^8 |x - 5| dx`


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


Evaluate :  `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`


Evaluate  : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`


Evaluate = `int (tan x)/(sec x + tan x)` . dx


Using properties of definite integrals, evaluate 

`int_0^(π/2)  sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`


State whether the following statement is True or False:

`int_(-5)^5 x/(x^2 + 7)  "d"x` = 10


`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?


`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`


The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______ 


`int_0^pi x sin^2x dx` = ______ 


`int_0^1 "e"^(5logx) "d"x` = ______.


Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`


`int_(-2)^2 |x cos pix| "d"x` is equal to ______.


If `f(a + b - x) = f(x)`, then `int_0^b x f(x)  dx` is equal to


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.


The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.


`int_0^(2a)f(x)/(f(x)+f(2a-x))  dx` = ______


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following integral:

`int_0^1x (1 - x)^5 dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following definite intergral:

`int_1^3logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×