English

By using the properties of the definite integral, evaluate the integral: ∫0π2 sinxsinx+cosxdx - Mathematics

Advertisements
Advertisements

Question

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx` 

Sum

Solution

Let `I = int_0^(pi/2) sqrtsinx/(sqrt sinx + sqrt cos x)  dx`     ...(i)

Replace x to `(pi/2 - x)` in (i)

`[∵ int_0^a f (x) dx = int_0^a f (a - x) dx]`

`I = int_0^(pi/2) (sqrt sin (pi/2 - x))/ (sqrt sin (pi/2 - x) + sqrt cos (pi/2 - x))  dx`

`I = int_0^(pi/2) sqrtcosx/(sqrtcos x + sqrt sin x)  dx`       ...(ii)

Adding (i) and (ii), we get

`2I = int_0^(pi/2) [sqrt sinx/ (sqrt sinx + sqrt cos x) + sqrt cos x/(sqrt cos x + sqrt sinx)]  dx` 

`= int_0^(pi/2) (sqrt cos x + sqrt sin x)/(sqrt cosx + sqrt sin x)`

`= int_0^(pi/2) dx = [x]_0^(pi/2)`

`= pi/2 - 0`

`= pi/2`

⇒ `I = pi/4`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.11 [Page 347]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.11 | Q 2 | Page 347

RELATED QUESTIONS

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  (cos^5  xdx)/(sin^5 x + cos^5 x)`


By using the properties of the definite integral, evaluate the integral:

`int_0^1 x(1-x)^n dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(2x) cos^5 xdx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi log(1+ cos x) dx`


Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx`  if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`


\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.


If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

Evaluate : `int  "e"^(3"x")/("e"^(3"x") + 1)` dx


Evaluate :  `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`


Evaluate :  ∫ log (1 + x2) dx


Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`


Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.


Evaluate `int_1^3 x^2*log x  "d"x`


`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?


`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?


`int_0^1 (1 - x)^5`dx = ______.


`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.


`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?


`int_0^1 x tan^-1x  dx` = ______ 


`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______ 


The value of `int_1^3 dx/(x(1 + x^2))` is ______ 


`int_-2^1 dx/(x^2 + 4x + 13)` = ______


If `f(a + b - x) = f(x)`, then `int_0^b x f(x)  dx` is equal to


The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))  dx` is


`int_0^1 1/(2x + 5) dx` = ______.


Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`


`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.


`int_0^1|3x - 1|dx` equals ______.


Evaluate: `int_0^π 1/(5 + 4 cos x)dx`


Evaluate: `int_0^(π/4) log(1 + tanx)dx`.


`int_1^2 x logx  dx`= ______


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following integral:

`int_0^1 x (1 - x)^5 dx`


Solve.

`int_0^1e^(x^2)x^3dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×