Advertisements
Advertisements
Question
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx`
Solution
Let `I = int_0^(pi/2) sqrtsinx/(sqrt sinx + sqrt cos x) dx` ...(i)
Replace x to `(pi/2 - x)` in (i)
`[∵ int_0^a f (x) dx = int_0^a f (a - x) dx]`
`I = int_0^(pi/2) (sqrt sin (pi/2 - x))/ (sqrt sin (pi/2 - x) + sqrt cos (pi/2 - x)) dx`
`I = int_0^(pi/2) sqrtcosx/(sqrtcos x + sqrt sin x) dx` ...(ii)
Adding (i) and (ii), we get
`2I = int_0^(pi/2) [sqrt sinx/ (sqrt sinx + sqrt cos x) + sqrt cos x/(sqrt cos x + sqrt sinx)] dx`
`= int_0^(pi/2) (sqrt cos x + sqrt sin x)/(sqrt cosx + sqrt sin x)`
`= int_0^(pi/2) dx = [x]_0^(pi/2)`
`= pi/2 - 0`
`= pi/2`
⇒ `I = pi/4`
APPEARS IN
RELATED QUESTIONS
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (cos^5 xdx)/(sin^5 x + cos^5 x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(2x) cos^5 xdx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi log(1+ cos x) dx`
Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx` if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`
\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
Evaluate : `int "e"^(3"x")/("e"^(3"x") + 1)` dx
Evaluate : `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`
Evaluate : ∫ log (1 + x2) dx
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.
Evaluate `int_1^3 x^2*log x "d"x`
`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?
`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?
`int_0^1 (1 - x)^5`dx = ______.
`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.
`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?
`int_0^1 x tan^-1x dx` = ______
`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______
The value of `int_1^3 dx/(x(1 + x^2))` is ______
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
If `f(a + b - x) = f(x)`, then `int_0^b x f(x) dx` is equal to
The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2)) dx` is
`int_0^1 1/(2x + 5) dx` = ______.
Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`
`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.
`int_0^1|3x - 1|dx` equals ______.
Evaluate: `int_0^π 1/(5 + 4 cos x)dx`
Evaluate: `int_0^(π/4) log(1 + tanx)dx`.
`int_1^2 x logx dx`= ______
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following integral:
`int_0^1 x (1 - x)^5 dx`
Solve.
`int_0^1e^(x^2)x^3dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`